-
公开(公告)号:CN119236677A
公开(公告)日:2025-01-03
申请号:CN202411506210.8
申请日:2024-10-28
Applicant: 中国科学院福建物质结构研究所 , 中国核动力研究设计院
Abstract: 本发明公开了一种电渗析耦合萃取富集7Li的方法,该方法包含:将若干功能化膜串联耦合用于电渗析富集7Li,供给相和接收相分别放置在功能化膜的两侧,通过PID控制供给相和接收相的流速调整供给相和接收相的体积比为(1~100):(1~100),将串联的若干功能化膜两侧的电极通电,施加电压,电压为‑20~20V,时间为3s~120min,进行Li同位素的萃取分离。本发明通过电渗析耦合膜技术对Li同位素进行串级分离,增加7Li的选择性,提高7Li同位素分离富集的效果,通过102级串级可以将7Li天然稳定同位素的丰度从92.47%提高到5N级。
-
公开(公告)号:CN115181881B
公开(公告)日:2023-04-11
申请号:CN202210800098.3
申请日:2022-07-08
Applicant: 中国核动力研究设计院
IPC: C22C33/02 , B22F3/14 , B22F3/18 , C21D1/26 , C22C38/22 , C22C38/02 , C22C38/04 , C22C38/26 , C22C38/24
Abstract: 本发明公开了一种ZrC纳米颗粒增强RAFM钢的制备方法,包括:将ZrC纳米粉末和RAFM钢粉末混合后在转速为300~370rpm/min下进行球磨40~60h,得到ZrC纳米颗粒增强RAFM钢前驱体,球料比为8:1~15:1;将前驱体进行放电等离子烧结,得到ZrC纳米颗粒增强RAFM钢烧结样品,烧结温度为1000℃~1100℃,烧结压力为40~60MPa,保温时间4~6min;将烧结样品依次进行热轧处理和退火处理,得到ZrC纳米颗粒增强RAFM钢;ZrC纳米粉末的熔点较高,因此其在高温环境中能够稳定存在,能够效果地抑制RAFM钢晶粒的长大,从而使得RAFM钢晶粒的强度和抗蠕变性能保持稳定。
-
公开(公告)号:CN115786817A
公开(公告)日:2023-03-14
申请号:CN202211580820.3
申请日:2022-12-09
Applicant: 中国核动力研究设计院
IPC: C22C38/28 , G21C3/07 , C22C38/04 , C22C38/26 , C22C38/24 , C22C38/22 , C22C38/02 , C22C33/04 , C21D1/26
Abstract: 本发明公开了一种先进反应堆结构材料用高强韧性不锈钢材料及其应用,高强韧性不锈钢材料为含有金属碳化物作为弥散纳米第二相的铁素体/马氏体不锈钢基合金;所述金属碳化物中的金属元素包括Zr,以及Ta和/或V。通过现有铁素体/马氏体不锈钢基合金的基础上,向其制备的过程中添加金属元素,使得这些金属元素和铁素体/马氏体不锈钢基合金中的碳元素形成金属碳化物,金属碳化物的尺寸为纳米级,在铁素体/马氏体不锈钢基合金中作为弥散纳米第二相,能够显著提高不锈钢合金的高温强度和组织热稳定性。
-
公开(公告)号:CN114214568A
公开(公告)日:2022-03-22
申请号:CN202111582159.5
申请日:2021-12-22
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种高强耐热的弥散增强FeCrAl合金材料、制备方法、应用,采用纳米混合物弥散FeCrAl合金,所述纳米混合物包括纳米ZrO与纳米TaC。采用在FeCrAl合金中添加纳米ZrO与纳米TaC颗粒,能够显著细化晶粒,提高FeCrAl合金的高温强度和组织稳定性,同时具有良好室温力学性能和适合加工的塑性,能够同时满足FeCrAl合金作为包壳材料在室温下的较高强度和塑性、在高温下(不低于800℃)的较高强度、在1000℃以上较长时间内具有较强的组织热稳定性且晶粒尺寸稳定不变的要求,可以用作反应堆用合金材料,尤其是作为堆芯结构材料和燃料元件包壳材料。
-
公开(公告)号:CN110606742B
公开(公告)日:2022-02-22
申请号:CN201911016644.9
申请日:2019-10-24
Applicant: 中国核动力研究设计院
IPC: C04B35/50 , C04B35/622 , C04B35/626 , G21C3/62
Abstract: 本发明公开了核电用TiO2‑Gd2O3可燃毒物陶瓷材料及其制备方法,解决了现有技术中未见能够有效适用于核电运行环境下,并有效提高核电的安全性和经济性目的的TiO2‑Gd2O3可燃毒物材料的问题。本发明包括(1)制备Gd(NO3)3和Ti(NO3)4的混合溶液,制备饱和(NH4)2CO3溶液;(2)将饱和(NH4)2CO3溶液加入到混合溶液中反应,反应后获得沉淀物;(3)沉淀物清洗后烘干得到前躯体粉末;(4)将前躯体粉末放置到500~550℃条件下保温5~7h后取出研磨得到粉体;(5)粉体压制成型,再经过烧结后得到成品。本发明具有致密度高、强度高,适用于先进核电水冷动力堆,固有安全性高等优点。
-
公开(公告)号:CN113235014A
公开(公告)日:2021-08-10
申请号:CN202110491788.0
申请日:2021-05-06
Applicant: 中国科学院合肥物质科学研究院 , 安徽工业技术创新研究院六安院 , 中国核动力研究设计院
Abstract: 本发明公开了一种高性能含硅铁素体/马氏体钢,涉及金属材料技术领域,其化学成分由以下重量百分比的元素组成:C 0.11‑0.13%、Cr 8.5‑10%、W1.3‑1.7%、Mn 0.4‑0.6%、Ta 0.05‑0.15%、V 0.15‑0.25%、Zr 0.005‑0.015%、Si0.7‑1.2%,余量为Fe和不可避免的杂质;其制备是先按照上述合金钢成分配方进行熔炼浇注获得钢铸锭,再将钢铸锭采用等通道转角挤压处理得到的,其中,每进行一道次的挤压处理后,均进行退火处理。本发明通过对F/M合金钢的化学成分及加工工艺的改进,调控9Cr‑F/M钢的显微组织,包括析出相的类型、尺寸和分布,提高合金钢的综合力学性能。
-
公开(公告)号:CN112374902A
公开(公告)日:2021-02-19
申请号:CN202011352192.4
申请日:2020-11-26
Applicant: 中国核动力研究设计院
IPC: C04B35/80 , C04B35/565 , C04B35/571 , C04B35/622 , C04B35/64
Abstract: 本发明公开了一种高致密化SiCf/SiC包壳复合管材的制备方法,包括以下步骤:S1:制备低密度SiCf/SiC预制体:以编织或缠绕成SiC纤维管,然后通过CVI工艺在纤维表面进行PyC界面层沉积及短时间SiC基体沉积,获得低密度SiCf/SiC预制体;S2:制备SiCf/SiC坯体:将纳米SiC烧结粉体和有机添加剂分散在有机分散剂中制成NITE‑SiC浆料,通过浸渗使NITE‑SiC浆料扩散进低密度SiCf/SiC预制体的孔隙之中,干燥后获得SiCf/SiC坯体;S3:热处理:将SiCf/SiC坯体在惰性气体气氛保护下进行脱胶热处理;S4:热等静压烧结:将热处理后的坯体在惰性气体气氛下,气相加压烧结,获得高致密化SiCf/SiC包壳复合管材。通过该制备方法不仅能够获得致密度高的SiCf/SiC包壳复合材料,且解决了SiCf/SiC管件成型难的问题。
-
公开(公告)号:CN109811116A
公开(公告)日:2019-05-28
申请号:CN201910128066.1
申请日:2019-02-21
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种耐事故包壳用FeCrAl基合金纳米晶材料的制备方法,FeCrAl基合金锻件进行高温固溶,保温1~2h,冷却后获得完全固溶的超饱和合金固溶体;将FeCrAl基合金饱和固溶体进行温轧加工;将温轧变形后的合金进行5%~10%冷轧变形,然后进行低温时效处理;将低温时效后的变形合金进行退火热处理,得到材料。本发明制备的材料在高温下具有较好的抗氧化能力以及腐蚀能力,更适用于核领域。
-
公开(公告)号:CN103528905B
公开(公告)日:2015-10-28
申请号:CN201310489760.9
申请日:2013-10-18
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种冲击磨损试验机,包括高温高压釜(1)、直线电机(2)、外磁体(3)、内磁体(4)及驱动杆(7),其中,直线电机(2)和外磁体(3)均位于高温高压釜(1)外,且直线电机(2)与外磁体(3)连接。内磁体(4)和驱动杆(7)均位于高温高压釜(1)内,内磁体(4)与外磁体(3)的位置对应,驱动杆(7)上端连接于内磁体(4)下端面。本发明还公开了上试验机制造冲击磨损的方法。本发明的试验机整体结构简单,便于实现,本发明的试验机在高温高压下制造冲击磨损时能避免实现高温高压下高速运动的动密封,性价比高,具有好的市场应用前景。
-
公开(公告)号:CN115852230A
公开(公告)日:2023-03-28
申请号:CN202211102285.0
申请日:2022-09-09
Applicant: 中国核动力研究设计院
IPC: C22C33/02 , C22C38/02 , C22C38/06 , C22C38/22 , C22C38/28 , B22F3/15 , B22F3/18 , B22F3/24 , B22F9/04
Abstract: 本发明公开了一种ZrC增强FeCrAl合金及其制备方法,包括以下步骤:在零度以下的低温条件下,将ZrC纳米粉与FeCrAl合金粉末低温球磨,得到ZrC与FeCrAl合金粉末的混合粉;将混合粉在惰性气氛保护下进行高能球磨,得到ZrC与FeCrAl的合金化粉末;将合金化粉末通过热等静压方式制备ZrC纳米颗粒增强FeCrAl坯料;将坯料通过控制调向轧制成形,得到ZrC增强FeCrAl合金。本发明通过两步球磨法,先低温球磨粉末均匀细化处理,再高能球磨粉末合金化,结合热等静压(HIP)、控制调向轧制工艺,利于ZrC增强相均匀分散,制备获得高强度、高热稳定性的ZrC增强FeCrAl合金材料。
-
-
-
-
-
-
-
-
-