Abstract:
PURPOSE: An intelligent porosity biodegrade polymer support and a manufacturing method thereof are provided, which can induce a musculoskeletal tissue regeneration from stem cell to in situ in a biological tissue. CONSTITUTION: A manufacturing method of an intelligent porosity biodegrade polymer support comprises next steps: a step of obtaining a polymer specimen which contains a bioactive substance in inside; a step of manufacturing a porosity biodegrade polymer support; a step of reforming a hydrophobic surface to a hydrophilic property after plasma-processing a porosity biodegrade polymer support with reactive gas; a step of fixing a heparin in an activated carboxyl group; a step of combining bioactive substance in a heparin fixed on the surface of a porosity biodegrade polymer support; a step of including a cytotropism of different kind and a bioactive substance with a superior cell blastogenesis in inside of each polymer support.
Abstract:
PURPOSE: A pluronic derivative hydrogel is provided to ensure excellent biodegradability while maintaining thermosensitivity of a pluronic polymer, to improve cell proliferation and cell differentiation, and to be useful for generating artificial tissue or organs. CONSTITUTION: An injectable thermosensitive pluronic derivative hydrogel has a biodegradable polymer introduced to one side or both sides of the pluronic polymer. Methacryloxyethyl trimellitic anhydride is bonded to the biodegradable polymer. A physioactive material is polymerized to a carboxyl group of the methacryloxyethyl trimellitic anhydride. The pluronic polymer has a structure of polyethylene oxide-polypropylene oxide-polyethylene oxide.
Abstract:
PURPOSE: A method for preparing a self-assembled extracellular matrix and a use thereof are provided to obtain the self-assembled extracellular matrix with a nanofiber. CONSTITUTION: A method for preparing a self-assembled extracellular matrix comprises: a step of culturing cells on a two-dimensional surface to prepare an extracellular matrix; and a step of decellularizing the cells and preparing the extracellular matrix from the two-dimensional surface. The cell is an autologous cell or a stem cell.
Abstract:
본 발명은 (a) 코팅 용액을 분사 노즐에 공급하는 공정, (b) 고전압을 인가하여 상기 코팅 용액을 하전시키는 공정, 및 (c) 하전된 코팅 용액을 분사 노즐을 이용하여 분사하여 스텐트 또는 생체 이식물의 표면을 코팅하는 공정을 포함하는, 스텐트 또는 생체 이식물의 표면 코팅 방법, 상기 방법에 이용되는 전기 분사 코팅 장치, 및 표면 코팅된 스텐트 또는 생체 이식물의 제조 방법에 관한 것이다. 본 발명에서는 코팅 두께를 나노미터부터 마이크로미터 수준까지 조절할 수 있고, 다층 구조의 코팅을 형성시킬 수 있으며, 약물 방출형 기능성 코팅을 할 수 있으므로, 다양한 물질의 표면을 코팅하여 부가 가치가 높은 스텐트 또는 생체 이식물을 제공할 수 있다. 스텐트, 생체 이식물, 전기 분사, 코팅, 고분자, 약물, 생리 활성 물질
Abstract:
PURPOSE: A method for manufacturing a surface-modified metal substrate is provided to simplify process and to reduce production cost. CONSTITUTION: A surface-modified metal substrate contains a metal substrate and polymer layer which is chemically conjugated to the surface through oxygen atoms. A method for manufacturing the surface-modified metal substrate comprises: a step of introducing a hydroxy group to the surface of the metal substrate; a step of polymerizing monomers on the surface to chemically bind polymers onto the surface through oxygen atoms. The metal is selected from stainless steel, covalt-chrome, titanium, nitinol, gold, silver, platinum, tantalum, magnesium, and metal alloy thereof.
Abstract:
PURPOSE: An intelligent fibrin bio-adhesive with superior hemostasis effect and mechanical properties is provided to obtain an anti-bacteria property by adding natural polymer and/or antibiotics. CONSTITUTION: Fibrin and natural polymer form crosslinkage, and interpenetrating network or semi-interpenetrating network is obtained. The natural polymer is one or more selected from a group including alginate, chitosan, chitin, cellulose, agarose, amylase, dextran, proteoglycan, glycosaminoglycan, collagen, gelatin, heparin, hyaluronic acid, pectin, carrageena, chondroitin sulfate, dextran sulfate, polylysine, pullulan, carboxylmethyl chitin, and the salt of the same. Antibiotics are additionally introduced into the interpenetrating network or the semi-interpenetrating network.