Abstract:
A connector that is configured to mate with different mating connectors by virtue of having different removably assembled interchangeable front housing portions includes a rear housing portion that includes a plurality of rear contacts. When the connector is to mate with a particular mating connector, a particular front housing portion of the connector that corresponds to the particular mating connector is selected from a plurality of available different front housing portions. The particular front housing portion is removably assembled to the rear housing portion, so that a plurality of front contacts of the particular front housing portion makes solderless physical and electrical contact with the plurality of rear contacts of the rear housing portion. The plurality of front contacts of the front housing portion are adapted to mate with corresponding contacts of the particular mating connector.
Abstract:
In a specific embodiment, a connector 100 is disclosed. The connector 100 comprises an insulative housing 102 defining a rear opening 108 for receiving a plurality of electrical wires 110 and a front opening 106 and a circuit board 104 disposed in the housing 102 and comprising a mating section 112 for mating with a corresponding mating section of a mating connector. The mating section 112 protrudes outwardly from the front opening 106 and terminates at a front edge 118 disposed between opposing side edges 114,116 of the mating section 112. The connector 100 further comprises opposing side arms 128,130 extending forwardly from opposing lateral sides 124,126 of the front opening 106 along, adjacent and beyond corresponding side edges 114,116 of the mating section 112 with a maximum separation between each side edge 114,116 and the corresponding side arm 128,130 being sufficiently small so that when the connector 100 mates with a mating connector, no portion of the mating connector can be inserted between the side edge 114,116 and the corresponding side arm 128,130. Other exemplary embodiments are also disclosed.
Abstract:
An electrically conductive contact of an electrical connector includes an L-shaped main body comprising first and second legs connected at a junction. The first leg is configured to make physical and electrical contact with a first electric conductor. The contact includes an elongated resiliently flexible arm extending from an end of the second leg toward the junction and making an acute angle with the second leg at the end of the second leg. The flexible arm is configured to make solderless contact with a second electric conductor by pressing against the second electric conductor and resiliently flexing toward the second leg.
Abstract:
An electrical connector is disclosed that includes an insulative housing having a mating face at one end, a rear face at another end, a mating slot at the mating face for receiving a complementary connector, a first set of contacts mounted in a first set of channels incorporated at a top of the insulative housing and a second set of contacts mounted in a second set of channels incorporated at a bottom of the insulative housing, and a shielding device located between the first set of contacts and the second set of contacts.
Abstract:
In a specific embodiment, a connector 100 is disclosed. The connector 100 comprises an insulative housing 102 defining a rear opening 108 for receiving a plurality of electrical wires 110 and a front opening 106 and a circuit board 104 disposed in the housing 102 and comprising a mating section 112 for mating with a corresponding mating section of a mating connector. The mating section 112 protrudes outwardly from the front opening 106 and terminates at a front edge 118 disposed between opposing side edges 114,116 of the mating section 112. The connector 100 further comprises opposing side arms 128,130 extending forwardly from opposing lateral sides 124,126 of the front opening 106 along, adjacent and beyond corresponding side edges 114,116 of the mating section 112 with a maximum separation between each side edge 114,116 and the corresponding side arm 128,130 being sufficiently small so that when the connector 100 mates with a mating connector, no portion of the mating connector can be inserted between the side edge 114,116 and the corresponding side arm 128,130. Other exemplary embodiments are also disclosed.
Abstract:
An electrical connector is disclosed that includes an insulative housing having a mating face at one end, a rear face at another end, a mating slot at the mating face for receiving a complementary connector, a first set of contacts mounted in a first set of channels incorporated at a top of the insulative housing and a second set of contacts mounted in a second set of channels incorporated at a bottom of the insulative housing, and a shielding device located between the first set of contacts and the second set of contacts.
Abstract:
An electrical connector configured to mate with a mating connector along a mating direction includes an electrically insulative unitary housing, pluralities of top and bottom contacts, and an electrically conductive unitary shield. The pluralities of top and bottom contacts are disposed in a central slot at a respective top surface and a bottom surface of the central slot for making contact with corresponding conductive terminals of a tongue of the mating connector. The shield is removably assembled to the housing along the mating direction from a rear side of the housing. The shield includes a base shield substantially covering an entire bottom surface of a bottom wall of the housing, and opposing side shields substantially covering opposing side walls of the housing. The shield leaves substantially an entire top surface of a top wall of the housing and the rear side of the housing exposed.
Abstract:
In a specific embodiment, a connector 100 is disclosed. The connector 100 comprises an insulative housing 102 defining a rear opening 108 for receiving a plurality of electrical wires 110 and a front opening 106 and a circuit board 104 disposed in the housing 102 and comprising a mating section 112 for mating with a corresponding mating section of a mating connector. The mating section 112 protrudes outwardly from the front opening 106 and terminates at a front edge 118 disposed between opposing side edges 114,116 of the mating section 112. The connector 100 further comprises opposing side arms 128,130 extending forwardly from opposing lateral sides 124,126 of the front opening 106 along, adjacent and beyond corresponding side edges 114,116 of the mating section 112 with a maximum separation between each side edge 114,116 and the corresponding side arm 128,130 being sufficiently small so that when the connector 100 mates with a mating connector, no portion of the mating connector can be inserted between the side edge 114,116 and the corresponding side arm 128,130. Other exemplary embodiments are also disclosed.
Abstract:
The present invention relates to cable-to-board connectors for fine pitch, high speed connector assemblies. The exemplary connector assembly includes an insulative housing, a plurality of first contacts disposed in the housing wherein at least a portion of the contacts are adapted to terminate at a conductive trace on a printed circuit board and a first cable comprising a plurality of first wires. Each of the first contacts has a first mating portion for making electrical contact with a corresponding contact of a mating connector; and a first terminal portion extending along a housing bottom wherein the first terminal portion is adapted to terminate at a conductive trace on a printed circuit board. In the exemplary cable assembly, each first wire of the first cable is terminated at the first terminal portion of a different first contact.
Abstract:
The present invention relates to a hybrid connector. The connector comprises an insulating housing having parallel rows of first and second terminals disposed in the housing. Each first and second terminal includes a terminal portion configured to make contact with an electrically conductive trace of a circuit board; and a mating portion configured to contact a terminal of a mating connector, the mating portions of the first terminals parallel to and facing the mating portions of the second terminals. The housing defines a cavity formed therein between the mating portions of the first and second terminals, wherein the cavity defining a cavity opening at an external surface of the housing for receiving light therefrom. An optical relay portion is disposed in the cavity, wherein the optical relay portion comprises at least one of an optical transceiver, an optical lens and an optical waveguide.