Abstract:
Barrier adhesive compositions include at least one polyisobutylene-containing polymer and a curable silsesquioxane additive. The curable silsesquioxane additive may contain free radically polymerizable groups. Barrier film articles include the barrier adhesive compositions and a film. The barrier film articles can be used to encapsulate organic electronic devices.
Abstract:
A method of patterning a conductive layer to form transparent electrical conductors that does not require etching is disclosed. The method includes peeling a strippable polymer layer from a substrate coated with the conductive layer to pattern the conductive layer. In some embodiments, a resist matrix material is patterned over the conductive layer to prevent removal of the conductive layer beneath the resist matrix material. In other embodiments, a liner having a pressure sensitive adhesive surface is brought into contact with the patterned strippable polymer material to remove both the patterned strippable polymer material and the conductive layer beneath it.
Abstract:
The present invention relates to protection films comprising an optical film suitably sized for an illuminated display device, the optical film having perimeter surface portions defining a central region. The protection film further comprises a pressure sensitive adhesive layer at the perimeter surface portions of the optical film. The optical film and/or pressure sensitive adhesive layer has been adapted such that the at least the central region of the optical film contacts the illuminated display device or the central region of the optical film is bonded to the illuminated display device by means of a self-wetting layer. The protection film may be preassembled or may be provided as a kit, the kit comprising an optical film and a double-faced pressure sensitive tape.
Abstract:
A transparent electrode is described and includes metallic nanowires and a polymeric overcoat layer for protecting the nanowires from corrosion and abrasion. The polymeric overcoat layer includes nanoparticles, particularly antimony tin oxide, zinc oxide and/or indium tin oxide, and has a sheet resistance of greater than about 107 ohm/sq. The transparent electrode can be used in electronic displays such as polymer-dispersed liquid crystal, liquid crystal, electrophoretic, electrochromic, thermochromic, electroluminescent and plasma displays.
Abstract:
A method of making an adhesive is provided, including obtaining an actinic radiation-polymerizable adhesive precursor composition disposed against a surface of an actinic radiation-transparent substrate and irradiating a first portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a first irradiation dosage. The method further includes irradiating a second portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a second irradiation dosage. The first portion and the second portion are adjacent to or overlapping with each other and the first irradiation dosage and the second irradiation dosage are not the same. The method forms an integral adhesive having a variable thickness in an axis normal to the surface of the actinic radiation-transparent substrate. Also, an adhesive article is provided, including a substrate having a major surface and an integral adhesive disposed on the major surface of the substrate. Further, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying an article; and generating, with the manufacturing device by an additive manufacturing process, the article based on the digital object. A system is provided, including a display that displays a 3D model of an article; and one or more processors that, in response to the 3D model selected by a user, cause a 3D printer to create a physical object of an article.
Abstract:
A transparent conductive article includes a transparent substrate, a thin electrically conductive grid, and a carbon nanolayer. The grid is disposed on the substrate, and the carbon nanolayer is also disposed on the substrate and in contact with the grid. The conductive grid and the carbon nanolayer may have thicknesses of no more than 1 micron and 50 nanometers, respectively. The carbon nanolayer has a morphology that includes graphite platelets embedded in nano-crystalline carbon, and can be produced with a buffing procedure using dry carbon particles without substantially damaging the grid structure. The article may have a visible light transmission of at least 80%, and a sheet resistance less than 500 or 100 ohms/square. The transparent substrate may comprise a flexible polymer film. The disclosed articles may substantially maintain an initial sheet resistance value when subjected to flexing.
Abstract:
An electronically switchable privacy film suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low light scattering states upon application of an electric field across the transparent electrodes.
Abstract:
A method of making an adhesive is provided, including obtaining an actinic radiation-polymerizable adhesive precursor composition disposed against a surface of an actinic radiation-transparent substrate and irradiating a first portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a first irradiation dosage. The method further includes irradiating a second portion of the actinic radiation-polymerizable adhesive precursor composition through the actinic radiation-transparent substrate for a second irradiation dosage. The first portion and the second portion are adjacent to or overlapping with each other and the first irradiation dosage and the second irradiation dosage are not the same. The method forms an integral adhesive having a variable thickness in an axis normal to the surface of the actinic radiation-transparent substrate. Also, an adhesive article is provided, including a substrate having a major surface and an integral adhesive disposed on the major surface of the substrate.
Abstract:
A film including: a substrate; a first barrier layer on the substrate; a first resin layer on the first barrier layer; wherein the first resin layer includes a structured major surface and a plurality of features; a second barrier layer on the structured major surface of the first resin layer; and a second resin layer on the second barrier layer, wherein the second resin layer includes a structured major surface and a plurality of features.
Abstract:
Wireless sensing devices including stable near-field antennas are provided. A spacer layer is attached to a portion of the substrate adjacent to the antenna. The spacer layer has a thickness T, a relative permittivity k, and a figure of merit defined as the ratio of T (in micrometers) by k. The spacer layer has the figure of merit no less than 20 (micrometers).