Abstract:
A condensation management manifold includes a first portion having a first elongated channel comprising a first condensate flow channel. A second portion of the manifold has second elongated channel comprising a second condensate flow channel. The second portion is configured to nest at least partially within the first portion such that a first surface of a flexible condensate management film is fluidically coupled to the first flow channel and an oppositely oriented second surface of the condensate management film is fluidically coupled to the second flow channel.
Abstract:
A condensation management system includes an elongated flexible film configured to be stretched under tension between a first film support and a second film support. The film includes first and second ends that extend laterally across a width of the film. The film includes first and second sides that extend longitudinally between the first and second film ends. The film has a concave surface and an opposing convex surface extending between the first and second sides of the film. Microchannels are disposed in at least one of the concave surface and the convex surface. The microchannels induce a predetermined radius of curvature in the concave and convex surfaces of the film when the film is stretched longitudinally between the first and second film supports.
Abstract:
Methods and kits for removing calculus from a tooth, wherein the method can include applying a component A to the tooth, wherein component A comprises a hydrogen peroxide or a precursor thereto; applying a component B to the tooth, wherein component B comprises a non-enzymatic, hydrogen peroxide decomposition catalyst for generating oxygen gas; wherein components A and B are applied simultaneously or sequentially to the tooth, thereby generating oxygen gas to soften and/or loosen at least part of the calculus on the tooth; and removing at least a part of the calculus from the tooth.
Abstract:
An anti-slip, liquid management cover article for a flooring surface. The article includes a film defining a working face. A microstructured surface is formed at the working face, and includes a plurality of primary ridges and capillary microchannels each having a bottom surface. Each primary ridge is an elongated body having a length. A shape of a portion of at least one of the primary ridges is non-uniform in a direction of the length. The capillary microchannels facilitate spontaneous wicking of liquid. With this construction, the non-uniform shape establishes an elevated coefficient of friction at the working face as measured in multiple directions. The cover article minimizes the risk of pedestrian slippage, even in the presence of water or other liquids.
Abstract:
An article comprises a structure having an outer surface extending along a longitudinal axis. At least a portion of a cross section of the outer surface is convex. Fluid control channels extend along a channel longitudinal axis along at least a portion the convex surface. The channel longitudinal axis makes an angle between 0 and 90 degrees with respect to the longitudinal axis of the outer surface. The fluid control channels are configured to allow capillary movement of liquid in the channels and across the convex surface.
Abstract:
Methods and kits for removing calculus from a tooth. The method includes applying a component A comprising hydrogen peroxide or a precursor thereto to the tooth; applying a component B comprising a catalase to the tooth, thereby generating oxygen; and removing at least a part of the calculus from the tooth; wherein the component A is applied before or after the component B is applied.
Abstract:
Porous polymeric particles are provided that can be hydrophilic or hydrophobic. The porous polymeric particles can be used for the storage and delivery of various active agents or for moisture management. Reaction mixtures for forming the porous polymeric particles, methods of making the porous polymeric particles, and articles containing the porous polymeric particles are also provided.