Abstract:
Techniques for fabricating a laminated ceramic housing that can be used for a handheld computing device that includes an enclosure having structural walls formed from a multi-layered ceramic material that can be radio-transparent. The multi-layered ceramic housing can be formed of a plurality of ceramic materials such as zirconia and alumina in any combination. The multi-layer ceramic substrate includes an inner layer and surface layers that sandwich the inner layer. The multi-layer ceramic substrate has an increased transverse strength due to the surface layers having a coefficient of thermal expansion (CTE) that is less than that of the inner layer.
Abstract:
Embodiments of the present disclosure provide a system and method for providing haptic output for an electronic device. In certain embodiments, a type of haptic output is provided based on a determined orientation, position, and/or operating environment of the electronic device. Specifically, the electronic device may receive input from one or more sensors associated with electronic device. Once the input from the one or more sensors is received, an orientation, position and/or operating environment of the electronic device is determined. Based on the determined orientation of the electronic device, a type of haptic output is selected and provided.
Abstract:
An opaque cover for a capacitive sensor is provided. The cover includes a transparent substrate and a black color stack disposed adjacent the transparent substrate. The black color stack includes a pigment stack having a first dielectric layer, a second dielectric layer, and a first light absorbing layer positioned between the first and second dielectric layers. The first dielectric layer has a first refractive index. The second dielectric layer has a second refractive index different from the first refractive index. The black color stack also includes a plurality of second light absorption layers interleaved with a plurality of third dielectric layers.
Abstract:
An improved outer layer of plating comprising a binary metal alloy of gold and palladium is employed on connector contacts. The binary metal alloy is plated on at least the contact surface of the contacts. Intermediate plating layers can be applied between the outer layer of gold and palladium and the conductive base of the contacts. The binary metal alloy of gold and palladium may be configured to have a mostly gold or a mostly silver appearance, depending upon the relative concentration of gold and palladium in the binary metal alloy.
Abstract:
An item may be provided with a body that forms an enclosure. The body (12) may have body portions (16, 18) that open and close along a seam (14). An elongated magnetic fastener (36) may run along the seam. The magnetic fastener may have first (38) and second (40) portions on opposing sides of the seam. The first and second portions may include magnets. When the magnetic fastener is operated in a closed state, the magnets in the first and second portions attract each other and pull the first and second portions of the fastener together to close the seam. When the magnetic fastener is operated in an open state, the magnets in the first and second portions repel each other and push the first and second portions of the fastener apart to open the seam.
Abstract:
Embodiments of the present disclosure provide a system and method for providing haptic output for an electronic device. In certain embodiments, a type of haptic output is provided based on a determined orientation, position, and/or operating environment of the electronic device. Specifically, the electronic device may receive input from one or more sensors associated with electronic device. Once the input from the one or more sensors is received, an orientation, position and/or operating environment of the electronic device is determined. Based on the determined orientation of the electronic device, a type of haptic output is selected and provided.
Abstract:
Embodiments disclosed therein generally pertain to selectively strengthening glass. More particularly, techniques are described for selectively strengthening cover glass, which tends to be thin, for electronic devices, namely, portable electronic devices.
Abstract:
An opaque cover for a capacitive sensor is provided. The cover includes a transparent substrate and a black color stack disposed adjacent the transparent substrate. The black color stack includes a pigment stack having a first dielectric layer, a second dielectric layer, and a first light absorbing layer positioned between the first and second dielectric layers. The first dielectric layer has a first refractive index. The second dielectric layer has a second refractive index different from the first refractive index. The black color stack also includes a plurality of second light absorption layers interleaved with a plurality of third dielectric layer.
Abstract:
Systems and methods for forming a smooth matte surface of a ceramic component using a double abrasive blasting process. A surface region of a surface of the ceramic component may be blasted in a first abrasive blasting process, using, for example, a first abrasive media comprised of a first abrasive material having a hardness that is greater than that of the ceramic component. The surface may be blasted another time in a second abrasive blasting process, using, for example, a second abrasive media comprised of a second abrasive material coupled to an elastic element. In the second abrasive blasting process, the second abrasive material may be harder than the ceramic component.
Abstract:
Systems and methods for strengthening a sapphire part are described herein. One embodiment may take the form of a method including orienting a first surface of a sapphire member relative to an ion implantation device and performing a first implantation step. The implanting step may include directing ions at the first surface of the sapphire member to embed them under the first surface. The systems and methods may also include one or more of heating the sapphire member to diffuse the implanted ions into deeper layers of sapphire member, cooling the sapphire member, and performing at least a second implantation step directing ions at the first surface of the sapphire member to embed the ions under the first surface.