Abstract:
Visibility of the metal mesh touch electrodes can be mitigated using one or more mitigation techniques. In some examples, the boundary between touch electrodes and/or the boundary between a touch electrode and a routing trace of another touch electrode and/or the boundary between two routing traces can be non-linear. In some examples, dummy cuts can be made within an area of a touch electrode region (e.g., while maintaining the same electrical potential for the touch electrode region). In some examples, notches can be made in the metal mesh. In some examples, the location of cuts and/or notches can be optimized to mitigate visibility of the metal mesh. In some examples, some or all of the visibility mitigations may be used in combination in a touch screen.
Abstract:
A display may have an array of pixels such as liquid crystal display pixels. The display may include short pixel rows that span only partially across the display and full-width pixel rows that span the width of the display. The gate lines coupled to the short pixel rows may extend into the inactive area of the display. Supplemental gate line loading structures may be located in the inactive area of the display to increase loading on the gate lines that are coupled to short pixel rows. The supplemental gate line loading structures may include data lines and doped polysilicon that overlap the gate lines in the inactive area. In displays that combine display and touch functionality into a thin-film transistor layer, supplemental loading structures may be used in the inactive area to increase loading on common voltage lines that are coupled to short rows of common voltage pads.