Abstract:
Electronic devices are be provided that contain wireless communications circuitry. The wireless communications circuitry includes radio-frequency transceiver circuitry coupled to multiple antennas. Signal strength measurements are gathered using the antennas and corresponding signal strength difference measurements are produced to reflect which of the antennas is exhibiting superior performing. The signal strength difference measurements are filtered using time-based averaging filters with different speeds. Corresponding filtered difference measurements are compared to antenna switching criteria such as antenna switching thresholds. An antenna switching threshold is adjusted in real time based on computations of how much variation is exhibited as a function of time between the difference measurements filtered using the filters of different speeds. In addition, information on device movement or other data may be used in making threshold adjustments.
Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as a UMTS network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
Apparatus and methods for time division based communication between a wireless device and a wireless network in a licensed radio frequency (RF) band and an unlicensed RF band are disclosed. The wireless device receives downlink control information (DCI), via a primary component carrier (PCC) of a primary cell (Pcell) in the licensed RF band, indicating downlink (DL) data transmission via a secondary component carrier (SCC) of a secondary cell (Scell) in the unlicensed RF band. The wireless device receives via the SCC part of the DL data transmission and transmits a control message via the PCC in response. The wireless device sends a scheduling request (SR) to the eNodeB and receives uplink (UL) transmission opportunities in a combination of the licensed RF band and the unlicensed RF band. The wireless device performs a clear channel assessment before reserving and transmitting to the eNodeB in the unlicensed RF band.
Abstract:
A single chip mobile wireless device capable of receiving and transmitting over one wireless network at a time maintains registration on two wireless communication networks that each use different communication protocols in parallel. Periodically, the mobile wireless device tunes one or more receivers from a first wireless network to a second wireless network in order to listen for paging messages addressed to the mobile wireless device from the second wireless network. The first wireless network suspends allocation of radio resources to the mobile wireless device based on receipt of a suspension message from the mobile wireless device, or based on knowledge of a paging cycle for mobile wireless device in the second wireless network, or based on detection of an out of synchronization condition with the mobile wireless device.