Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
Methods and apparatus for resuming radio channel measurements and estimations after an interruption in reception. In one exemplary embodiment of the present disclosure, an adaptive solution is provided for channel estimation based at least in part on the reception interruption duration. In one variant, an LTE UE determines a windowing length and/or “shape” for a time domain channel estimation algorithm based on at least the interruption duration. In an alternate variant, an LTE UE determines the interpolation coefficients for a filter based on the interruption duration.
Abstract:
This disclosure relates to techniques for estimating baseband power consumption and using the baseband power consumption estimation to select baseband operation features. According to some embodiments, one or more baseband power consumption modifiers occurring during an estimation window may be identified. Baseband power consumption of the wireless device during the estimation window may be estimated based on the identified baseband power consumption modifiers occurring during the estimation window. Baseband data throughput of the wireless device during the estimation window may also be estimated. One or more baseband operation characteristics may be selected based at least in part on the estimated baseband power consumption during the estimation window, possibly in conjunction with the estimated baseband data throughput during the estimation window, current wireless medium conditions, and/or other considerations.
Abstract:
A method for facilitating reselection by a wireless communication device to a first network from a second network after termination of a voice call for which a CSFB procedure was performed is provided. The method can include performing measurement of the first network while connected to the first network and performing measurement of the second network during the voice call. The method can further include determining based at least in part on one or more of the measurements that the wireless communication device is in a mobility state. The method can additionally include deriving a predicted signal quality of the first network after termination of the voice call based at least in part on the measurement of the first network and using the predicted signal quality to determine whether to release a connection to the second network and attempt reselection to the first network.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on a comparison between an offset at which CSF values are stable and an offset at which a CSF report is to be sent to a base station. If the CSF values are not stable by the time the CSF report is to be sent, a CSF report from a prior DRX cycle may be used. Alternatively, if the CSF value are stable by the time the CSF report is to be sent, a determination may be made to either generate a new CSF report or use a prior CSF report. The latter determination may be made based on various criteria, including channel conditions and DRX cycle length.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters such as e.g., wake-up times of digital tracking algorithms (such as timing, frequency and power control). In one exemplary embodiment, wake-up times for tracking loops are based on success/error metrics (e.g., Block Error Rate (BLER), Bit Error Rate (BER), Packet Error Rate (PER), Cyclic Redundancy Checks (CRC), etc.) of one or more previous discontinuous reception (DRX) cycles. In a second embodiment, wake-up times for tracking loops are based on residual frequency and timing errors, etc.
Abstract:
A method for determining whether an acknowledgement received by a user equipment from an external device is a forced acknowledgement. The method including transmitting a set of data stored in an uplink buffer to an external device, receiving an acknowledgement from the external device, determining if the acknowledgement received from the external device was a forced acknowledgement and flushing out an uplink buffer if determined that the acknowledgement was not a forced acknowledgement. The determining the acknowledgement is a forced acknowledgment being based on whether an uplink retransmission collides with one or more scheduled transmission times, a Physical Hybrid-ARQ Indicator Channel (PHICH) falls between gap measurements and an uplink retransmission collides with one of the gap measurements or a TTI bundling retransmission collides with a gap measurement. If the acknowledgement is not a forced acknowledgment, a set of data stored in the uplink buffer is retransmitted to the external device.
Abstract:
Connected-mode discontinuous reception (C-DRX) cycle scaling by a wireless user equipment (UE) device. The UE may establish a connection with a network via a wireless link, which may operate according to LTE. The UE may communicate with the network via the wireless link using C-DRX over a plurality of C-DRX cycles. Each C-DRX cycle may include a period of time during which the UE operates in a reduced-power state and a scheduled on-duration period of time. An indication may be received to remain in the reduced-power state during the scheduled on-duration period of time of at least one C-DRX cycle. The UE may remain in the reduced-power state during the scheduled on-duration period of time of at least one C-DRX cycle in response to the indication.
Abstract:
A method to be performed at a station configured to connect to a Long Term Evolution radio access network (LTE-RAN) to utilize enhanced Multimedia Broadcast Multicast Services using a Multicast-Broadcast Single-Frequency Network (MBSFN). The method including receiving a MBSFN subframe having a MBSFN subframe structure including a plurality of Orthogonal Frequency-Division Multiplexing (OFDM) symbols, a first one of the OFDM symbols having a first reference symbol inserted therein, a second one of the OFDM symbols having a second reference symbol inserted therein, determining a rate of change of channel conditions being experienced by the station and performing a non-destaggered channel estimation when the rate of change of channel conditions is greater than a predetermined threshold, the non-destaggered channel estimation using a first Channel Impulse Response (CIR) at the first OFDM symbol and a second CIR at the second OFDM symbol.
Abstract:
Manipulating modulation and coding scheme (MCS) allocation after a communication interruption. A UE device may resume communications with a BS after a communication interruption. Channel quality information may be generated and transmitted to the BS. The channel quality information may be based on channel quality measurements, and may also be based on an offset configured manipulate an MCS allocation by the BS based on determining that the interruption to communication between the UE and the BS has occurred.