Abstract:
Provided in one embodiment is a method of making use of foams as a processing aid or to improve the properties of bulk-solidifying amorphous alloy materials. Other embodiments include the bulk-solidifying amorphous alloy/foam composite materials made in accordance with the methods.
Abstract:
A method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between volume and temperature for one of a plurality of reference alloy samples having a chemical composition and various predetermined degrees of crystallinity; for an alloy specimen having the chemical composition and an unknown degree of crystallinity, obtaining a curve representing a relationship between volume and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.
Abstract:
Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.
Abstract:
Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
Abstract:
The disclosure provides members formed from multiple layers as well as enclosures and electronic devices that include the members. The members include glass members formed from multiple layers of glass. In some cases, the members include a protruding feature provided over a camera assembly of the electronic device. The member may define one or more through-holes that extend through the protruding feature. The protruding feature may define a textured region that may be configured to provide a matte or glossy appearance.
Abstract:
An electronic device may have a display for displaying images. The display may be coupled to a housing on a front face of the device. The housing may have a transparent portion on an opposing rear face of the device. The electronic device may have structures with an adjustable appearance. The adjustable-appearance structures may include a mask with openings or other mask elements and a corresponding overlapped patterned layer containing an array of visual elements. The visual elements may have different appearances, so that movement of the mask relative to the patterned layer changes the appearance of the adjustable-appearance structures. The state of the adjustable-appearance structure may be changed during use of the device by a user or may be adjusted then fixed during manufacturing.
Abstract:
Oxide coatings that reduce or eliminate the appearance of thin film interference coloring are described. In some embodiments, the oxide coatings are configured to reduce the appearance of fingerprints. In some cases, the oxide coatings are sufficiently thick to increase the optical path difference of incident light, thereby reducing any inference coloring by the fingerprint to a non-visible level. In some embodiments, the oxide coatings have a non-uniform thickness that changes the way light reflects off of interfaces of the oxide coating, thereby reducing or eliminating any thin film interference coloring caused by the oxide coatings themselves or by a fingerprint.
Abstract:
Provided in one embodiment is a method of forming a connection mechanism in or on a bulk-solidifying amorphous alloy by casting in or on, or forming with the bulk-solidifying amorphous alloy, a machinable metal. The connection mechanism can be formed by machining the machinable metal.
Abstract:
Described herein are methods of constructing a part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. Metallic glass meshes, metallic glass actuators, three dimensional metallic glass thermal history sensors, and methods of their manufacture are also disclosed.
Abstract:
Pressure sensing systems comprising bulk-solidifying amorphous alloys and pressure-sensitive switches containing bulk-solidifying amorphous alloys. The bulk-solidifying amorphous alloys are capable of repeated deformation upon application of pressure, and change their electrical resistivity upon deformation, thereby enabling measurement of the change in resistivity and consequently, measuring the deformation and amount of pressure applied.