Abstract:
The inventors herein disclose new heterobifunctional chromophores that are capable of coupling with two distinct moieties. One moiety may be either a signal-enhancing agent or a blocking agent. The second moiety may be one member of a specific binding pair. The invention is based in part on the surprising result that when a chromophore is used as a "cross-linker" between a signal-enhancing agent and a member of a binding pair (essentially being buried between the two), the signal of the chromophore is not quenched. This arrangement, wherein the chromophore acts simultaneously as a cross-linker and a detectable compound, provides significant advantages over previously known compounds since the chromophore is sterically hindered from interacting non-specifically with substances present in the test systems. Moreover, the chromophore can be used as a cross-linker with little or no loss of detectable signal.
Abstract:
The inventors herein disclose new heterobifunctional chromophores that are capable of coupling with two distinct moieties. One moiety may be either a signal-enhancing agent or a blocking agent. The second moiety may be one member of a specific binding pair. The invention is based in part on the surprising result that when a chromophore is used as a "cross-linker" between a signal-enhancing agent and a member of a binding pair (essentially being buried between the two), the signal of the chromophore is not quenched. This arrangement, wherein the chromophore acts simultaneously as a cross-linker and a detectable compound, provides significant advantages over previously known compounds since the chromophore is sterically hindered from interacting non-specifically with substances present in the test systems. Moreover, the chromophore can be used as a cross-linker with little or no loss of detectable signal.
Abstract:
A rapid, simple method for preparing beads for calibrating flow cytometers which contain a known number of fluorophores per bead is presented. Briefly, the invention utilizes beads coated with a stable complex of a fluorophore and an enzyme. the enzymatic activity of a known number of beads gives an accurate measure of fluorophore density on those beads.
Abstract:
Cells fixed with a fixative, reduced with a Schiff's base reducing agent and then dried in the presence of alpha - alpha -trehalose retain their light scatter and fluorescence properties and may be used, when rehydrated, as standards or controls in cellular analysis.
Abstract:
Cells fixed with a fixative, reduced with a Schiff's base reducing agent and then dried in the presence of alpha - alpha -trehalose retain their light scatter and fluorescence properties and may be used, when rehydrated, as standards or controls in cellular analysis.
Abstract:
Cells fixed with a fixative, reduced with a Schiff's base reducing agent and then dried in the presence of alpha - alpha -trehalose retain their light scatter and fluorescence properties and may be used, when rehydrated, as standards or controls in cellular analysis.
Abstract:
Presented are intrinsically fluorescent, self-multimerizing MHC fusion proteins, and complexes assembled therefrom that are capable of detectably labeling antigen-specific T lymphocytes. Also presented are methods for labeling antigen-specific T lymphocytes with the intrinsically fluorescent complexes of the present invention, and methods, particularly flow cytometric methods, for detecting, enumerating, enriching, and depleting antigen specific T lymphocytes so labeled.
Abstract:
Presented are intrinsically fluorescent, self-multimerizing MHC fusion proteins, and complexes assembled therefrom that are capable of detectably labeling antigen-specific T lymphocytes. Also presented are methods for labeling antigen-specific T lymphocytes with the intrinsically fluorescent complexes of the present invention, and methods, particularly flow cytometric methods, for detecting, enumerating, enriching, and depleting antigen specific T lymphocytes so labeled.