Abstract:
A device and a system for diagnosing a motor parameter are provided. The device includes a master chip, an excitation conditioning circuitry, a motor resolver unit, and a sine and cosine conditioning circuitry. The master chip includes a first analog-to-digital converter, a second analog-to-digital converter, a first processing unit, and a monitoring core.
Abstract:
A motor control system and a vehicle. The motor control system (1) includes a main control unit (10), a power supply unit (20), and a driving unit (30). The main control unit (10) is configured to: obtain sampling data of a motor and a power supply signal from the driving unit (30), generate a motor control signal according to the sampling data, and output a safety enable signal when determining that motor drive is abnormal according to the sampling data or when determining that power supply to the driving unit (30) is abnormal according to the power supply signal. The power supply unit (20) is configured to: supply power to the main control unit (10), monitor a state of the main control unit (10), and output a safety cut-off signal when the power supply unit (20) or the main control unit (10) is abnormal. The driving unit (30) is configured to: drive the motor according to the motor control signal, and switch to a safe path when receiving any one of the safety enable signal or the safety cut-off signal.
Abstract:
Disclosed are a carrier communication method based on electric automobile charging/discharging, comprising the following steps: S1: after being powered up and started, an electric automobile detecting whether a carrier signal from a peripheral device is received through an interface wire harness and whether the carrier signal is correct; S2: when detecting the carrier signal and detecting that the carrier signal is correct, the electric automobile receiving the carrier signal through the interface wire harness; and S3: the electric automobile performing coupling and filtering on the received carrier signal to convert the carrier signal into a standard carrier signal, and demodulating the standard carrier signal into a digital signal to obtain information of the peripheral device. The method, on the basis of not increasing the number of wire harness, may implement data transmission and sharing between an automobile and ECU modules of a peripheral device, and carrier communication with other signal lines as communication media at the same time, so as to avoid construction and investment of a new communication network, and reduce manufacturing cost and maintenance difficulty. Further disclosed are a carrier communication system and a carrier apparatus based on electric automobile charging/discharging.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting three-phase currents of the synchronous motor; determining whether a relationship between the three-phase currents satisfies a preset requirement; and if no, determining that the synchronous motor is out of step. It is determined that the synchronous motor is out of step when amplitudes of each current of the three-phase currents are not equal or when the phase difference between the three-phase currents is not 120°.
Abstract:
An electric automobile charging system (100) and an electric automobile having same. The system comprises: a power battery (10); a first charging interface (INT1) and a second charging interface (INT2) connected to an external power source; a first charging control branch (401) connected between the power battery (10) and the first charging interface (INT1); a second charging control branch (402) connected between the power battery (10) and the second charging interface (INT2); and a controller (80) connected to the first charging interface (INT1) and the second charging interface (INT2). The charging system (100) is capable of performing large-power AC charging on an electric automobile with AC power grids for civil or industrial use, so that a user can charge the electric automobile efficiently and conveniently at any place anytime. Moreover, the charging system is applicable to batteries of a wide working voltage range.
Abstract:
Disclosed are an electric vehicle and a power system and a motor controller for an electric vehicle. The power system for an electric vehicle comprises a power battery (10); a charge-discharge socket (20); a two-way DC/DC module (30); a drive control switch (40); a two-way DC/AC module (50); a motor control switch (60); a charge-discharge control module (70); and a controller module (80). The controller module (80) is connected to the drive control switch (40), the motor control switch (60) and the charge-discharge control module (70), and the controller module (80) is used for controlling the drive control switch (40), the motor control switch (60) and the charge-discharge control module (70) in accordance with the current operating mode of the power system. The power system can achieve high-power AC charging to an electric vehicle using a civil or industrial AC power grid so that users can perform a quick charge at a high efficiency anytime and anywhere. In addition, the applicable battery has a wide range of operating voltages, thereby saving space and costs.