Abstract:
The present invention relates to a microorganism belonging to the genus Escherichia sp. and a. method for producing L-amino acid using the same. The microorganism belonging to the genus Escherichia sp. has a sucrose assimilability and L-amino acid producing ability, which is obtained by introducing a gene encoding a sucrose assimilative microorganism-derived sucrose metabolic enzyme to sucrose non-assimilative microorganism belonging to the genus Escherichia sp. having an L-amino acid producing ability and sucrose PTS (phosphoenolpyruvate dependent sucrose phosphotransferase system) activity.
Abstract:
The present disclosure relates to a microorganism of the genus Escherichia producing more L-tryptophan by inactivating the activity of phosphatase. Additionally, the present disclosure relates to a method for producing L-tryptophan using the microorganism of the genus Escherichia.
Abstract:
Disclosed are a recombinant microorganism having enhanced L-amino acid producibility, wherein the recombinant microorganism is transformed to have an inactivated phage receptor thereof, and a method of producing an L-amino acid using the recombinant microorganism. The use of the recombinant microorganism may enable the production of the L-amino acid in a highly efficient manner.
Abstract:
Disclosed are a recombinant microorganism having enhanced L-amino acid productivity, wherein the recombinant microorganism is transformed to have removed or decreased activity of at least one of adenosine deaminase and AMP nucleosidase, and a method of producing an L-amino acid using the recombinant microorganism. The use of the recombinant microorganism may enable the production of the L-amino acid in a highly efficient manner.
Abstract:
Provided are a coryneform microorganism with improved ability to produce lysine in which septum formation initiator protein is inactivated, and a method for producing L-lysine using the microorganism.
Abstract:
The present invention relates to a modified polynucleotide encoding aspartate kinase (EC:2.7.2.4; hereinafter, referred to as LysC), transketolase (EC:2.2.1.1; hereinafter, referred to as Tkt) or pyruvate carboxylase (EC:6.4.1.1; hereinafter, referred to as Pyc), in which the initiation codon is substituted with ATG, a vector including the same, a microorganism transformed with the vector, and a method for producing L-lysine using the same.
Abstract:
The present invention relates to a microorganism belonging to the genus Escherichia sp. and a. method for producing L-amino acid using the same. The microorganism belonging to the genus Escherichia sp. has a sucrose assimilability and L-amino acid producing ability, which is obtained by introducing a gene encoding a sucrose assimilative microorganism-derived sucrose metabolic enzyme to sucrose non-assimilative microorganism belonging to the genus Escherichia sp. having an L-amino acid producing ability and sucrose PTS (phosphoenolpyruvate dependent sucrose phosphotransferase system) activity.
Abstract:
The present invention relates to a microorganism belonging to the genus Escherichia sp. and a. method for producing L-amino acid using the same. The microorganism belonging to the genus Escherichia sp. has a sucrose assimilability and L-amino acid producing ability, which is obtained by introducing a gene encoding a sucrose assimilative microorganism-derived sucrose metabolic enzyme to sucrose non-assimilative microorganism belonging to the genus Escherichia sp. having an L-amino acid producing ability and sucrose PTS (phosphoenolpyruvate dependent sucrose phosphotransferase system) activity.