Abstract:
A lithography mask includes a plurality of patterning features formed on a mask substrate and a first plurality of sub-resolution assist features (SRAFs) formed substantially perpendicular to the patterning features on the mask substrate.
Abstract:
A power generating black mask comprising an anti-reflection layer deposited over a substrate, a first electrode layer deposited over the anti-reflection layer, a semi-conductor layer deposited over the first electrode layer and a second electrode layer deposited over the semi-conductor layer.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A method for providing a liftoff process using a single layer resist and chemical mechanical polishing and sensor formed therewith are disclosed. Chemical mechanical polishing is combined with liftoff using only a single resist layer to allow the removal of leftover fencing on the side of a lifted resist pattern.
Abstract:
A method is disclosed for fabricating a read sensor for a magnetic head for a hard disk drive having a read sensor stack and two lateral stacks. The method of fabrication includes forming lateral stacks on a gap layer, surrounding a groove to form a template. The read sensor stack is then formed in the groove, which defines the lateral dimensions of the read sensor stack, and lead layers are then formed on the lateral stacks. Also disclosed is a read head for a disk drive having a sensor stack defined by pre-established lateral stacks, and a disk drive having the read head.
Abstract:
A method for fabricating a magnetic head with a trapezoidal shaped pole piece tip is described. The body of the main pole piece is deposited, then one or more layers for the pole piece tip are deposited. A bed material is deposited over the pole piece tip material. A void is formed in the bed material over the area for the pole piece tip. The void is filled with an ion-milling resistant material such as alumina preferably using atomic layer deposition or atomic layer chemical vapor deposition. The excess ion-milling resistant material and the bed material are removed. The result is an ion-milling mask formed over the area for the pole piece tip. Ion milling is then used to remove the unmasked material in the pole piece tip layer and to form a beveled pole piece tip and preferably a beveled face on the main pole piece.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A method of fabricating a passivation layer is provided. A substrate with a plurality of device structures and at least an interconnect thereon is provided. A patterned metallic layer is formed over the interconnection layer. A plasma-enhanced chemical vapor deposition process is performed to form a first passivation over the metallic layer such that the processing pressure is higher (and/or the processing power is lower) than the pressure (the power) used in prior art. A moisture impermeable second passivation is formed over the first passivation layer. With the first passivation formed in a higher processing pressure (and/or lower processing power), damages to metallic layers or devices due to plasma bombardment is minimized.