Abstract:
A radio network control node that determines the transmit power of a common or shared downlink transport channel regulates that power based on one or more factors. The downlink transmit power regulation makes common downlink transport channel transmissions more efficient and effective and effective in terms of delivering services to users, maximizing capacity, and reducing unnecessary interference. Examples of one or more factors that may be considered in regulating the transmit power on a common transport channel include (but are not limited do) include one or more measurements made by the user equipment of received downlink transmissions such as received signal strength, signal-to-interference ratio, error rates bit error rate and block error, etc. Other potential factors could include current conditions in the cell such as traffic volume and percentage of maximum base station transmit power currently being used. The service(s) requested for each common transport channel user may also be taken into account. The controlling radio network node for the user connection uses one or more of these factors to adapt the downlink transmit power of the common transport channel. That power level adaptation may occur directly or indirectly via another radio network controller or base station node. The transmit power on the common transport channel may be regulated in general, per user connection, block-by-block, etc.
Abstract:
A telecommunications network simplifies data flow and signaling by having a second control node (262) of a radio access network transmit cell information to a first control node (261) only when the cell information is not already known by the first control node. The invention is facilitated by a cell configuration generation index (CCGI). The cell configuration generation index (CCGI) represents a set of cell information parameters deemed current for a specified cell by a control node. In one example embodiment, the cell configuration generation index (CCGI) is a counter whose value is changed when configuration data of the specified cell is changed. In one example scenario, a cell identifier for the specified cell and the first control node's CCGI for the specified cell are included in a request message sent from the first control node to the second control node. If the second control node determines that the first control node's CCGI for the specified cell is current, no cell information for the specified cell need be sent by the second control node to the first control node in response. However, if the second control node determines that the first control node's CCGI for the specified cell is not current, the second control node includes in a response message both (1) the cell information deemed current by the second control node for the specified cell; and (2) second control node's CCGI (which is current and accurate) for the specified cell.
Abstract:
A connection is supported in a radio access network (RAN) between an external network (16) to a UE (30) using a first RAN node (26, 28) and second RAN node (26, 28). The transmission rate from the first RAN node (26, 28) to the second RAN node (26, 28) is regulated based on a rate control request from the first RAN node (26, 28). In one example embodiment, the first and second RAN nodes (26, 28) correspond to a serving radio network controller (26) and a drift radio network controller (26), respectively. In another example embodiment, the first and second RAN nodes (26, 28) correspond to a radio network controller (26) and radio base station (28), respectively. The rate control request is made based upon a congestion or load condition being monitored by the second RAN node (26, 28). When the load condition is detected, the second RAN node (26, 28) requests the first RAN node (26, 28) to lower the transmission rate of information. Conversely, when the load condition is relieved, the second RAN node (26, 28) can request that the first RAN node (26, 28) increase the transmission rate of information. The rate control may be applied in both downlink and uplink directions.
Abstract:
In accordance with the present invention, the control parameters for an in-and-out-of-synchronization detection algorithm (102) for a radio link set (set of combined radio links) are derived by a function (106) from the corresponding cell-based parameters. There are various modes of the method on how the control parameters for the in-and-out-of-synchronization detection algorithm for a radio link set (set of combined radio links) can be derived from the corresponding cell based parameters. For example, it could either be done dynamically, i.e. when a radio link is either added to or removed from a radio link set, or semi-statically, i.e. whenever the control parameters are changed for any cell in a base station, or in a combination of the dynamic and semi-static ways.
Abstract:
A method for performing Cell-Updates or URA-Updates in a mobile communication system is disclosed, whereby a User Equipment (UE) sends a Cell-Update message or URA-Update message to an SRNC. The-transported Cell-Update message or URA-Update message includes a sequence counter which is incremented each time the UE sends such a message to the SRNC. The SRNC stores the value of the sequence counter for each Cell-Update message or URA-Update message received and acknowledged. If the SRNC receives a Cell-Update message or URA-Update message with a corresponding sequence counter value'that is lower than the sequence counter value stored for the previously received Cell-Update message or URA-Update message, then the SRNC ignores the received Cell-Update message or URA-Update message. Also, the SRNC does not store the sequence counter value for the ignored, received Cell-Update message or URA-Update message.
Abstract:
A method for performing Cell-Updates or URA-Updates in a mobile communication system is disclosed, whereby a User Equipment (UE) sends a Cell-Update message or URA-Update message to an SRNC. The-transported Cell-Update message or URA-Update message includes a sequence counter which is incremented each time the UE sends such a message to the SRNC. The SRNC stores the value of the sequence counter for each Cell-Update message or URA-Update message received and acknowledged. If the SRNC receives a Cell-Update message or URA-Update message with a corresponding sequence counter value'that is lower than the sequence counter value stored for the previously received Cell-Update message or URA-Update message, then the SRNC ignores the received Cell-Update message or URA-Update message. Also, the SRNC does not store the sequence counter value for the ignored, received Cell-Update message or URA-Update message.
Abstract:
A connection is supported in a radio access network (RAN) between an external network to a UE using a first RAN node and second RAN node. The transmission rate from the first RAN node to the second RAN node is regulated based on a rate control request from the second RAN node. In one example embodiment, the first and second RAN nodes correspond to a serving radio network controller and a drift radio network controller, respectively. In another example embodiment, the first and second RAN nodes correspond to a radio network controller and radio base station, respectively. The rate control request is made based upon a congestion or load condition being monitored by the second RAN node. When the load condition is detected, the second RAN node requests the first RAN node to lower the transmission rate of information. Conversely, when the load condition is relieved, the second RAN node can request that the first RAN node increase the transmission rate of information. The rate control may be applied in both downlink and uplink directions.
Abstract:
A connection is supported in a radio access network (RAN) between an external network to a UE using a first RAN node and second RAN node. The transmission rate from the first RAN node to the second RAN node is regulated based on a rate control request from the second RAN node. In one example embodiment, the first and second RAN nodes correspond to a serving radio network controller and a drift radio network controller, respectively. In another example embodiment, the first and second RAN nodes correspond to a radio network controller and radio base station, respectively. The rate control request is made based upon a congestion or load condition being monitored by the second RAN node. When the load condition is detected, the second RAN node requests the first RAN node to lower the transmission rate of information. Conversely, when the load condition is relieved, the second RAN node can request that the first RAN node increase the transmission rate of information. The rate control may be applied in both downlink and uplink directions.
Abstract:
A method and apparatus for adaptive mobile station presence verification in a cellular system. Mobile station presence verification is performed only for selected requested handoffs from a first base station to a second base station, where the selected requested handoffs are chosen based on a rate of mobile station presence verifications per requested handoffs from the first base station to the second base station, that is adaptively changed as handoffs occur. In an embodiment of the invention, the rate of mobile station presence verifications per requested handoffs from the first base station to the second base station is adaptively changed based on the rates of unsuccessful verifications per verification attempts and, the rate of unsuccessful handoffs per requested handoff attempts, from the first base station to the second base station.