Abstract:
Various techniques are provided for systems and methods to process images to reduce consumption of an available output dynamic range by the sky in images. For example, according to one or more embodiments of the disclosure, a region or area in images that may correspond to the sky may be identified based on the location of the horizon in the images. A distribution of irradiance levels in the identified sky region may be analyzed to determine a dynamic range attributable to the sky region. A transfer function that compresses the dynamic range attributable to the sky region may be generated and applied so that the sky in the images may be suppressed, thereby advantageously preserving more dynamic range for terrestrial objects and other objects of interest in the images.
Abstract:
An imager array may be provided as part of an imaging system. The imager array may include a plurality of infrared imaging modules. Each infrared imaging module may include a plurality of infrared sensors associated with an optical element. The infrared imaging modules may be oriented, for example, substantially in a plane facing the same direction and configured to detect images from the same scene. Such images may be processed in accordance with various techniques to provide images of infrared radiation. The infrared imaging modules may include filters or lens coatings to selectively detect desired ranges of infrared radiation. Such arrangements of infrared imaging modules in an imager array may be used to advantageous effect in a variety of different applications.
Abstract:
Various techniques are disclosed for systems and methods using thermal imaging to intelligently monitor thoroughfares. For example, an intelligent monitoring system may include an infrared imaging module, a processor, a communication module, a memory, and an adjustable component. The system may be mounted, installed, or otherwise disposed at various locations along thoroughfares, and capture thermal images of a scene that includes at least a portion of the thoroughfares. Various thermal image processing and analysis operations may be performed on the thermal images to generate comprehensive monitoring information including an indication of detected objects in the scene and at least one attribute associated with the objects. Various actions may be taken, such as generating various alarms and intelligently adjusting operation of various adjustable devices on thoroughfares, based on the monitoring information. The monitoring information may be shared among multiple instances of the system, and may be communicated to external devices.
Abstract:
Various techniques are provided to detect abnormal clock rates in devices such as imaging sensor devices (e.g., infrared and/or visible light imaging devices). In one example, a device may include a clock rate detection circuit that may be readily integrated as part of the device to provide effective detection of an abnormal clock rate. The device may include a ramp generator, a counter, and/or other components which may already be implemented as part of the device. The ramp generator may generate a ramp signal independent of a clock signal provided to the device, while the counter may increment or decrement a count value in response to the clock signal. The device may include a comparator adapted to select the current count value of the counter when the ramp signal reaches a reference signal. A processor of the device may be adapted to determine whether the clock signal is operating in an acceptable frequency range, based on the selected count value.
Abstract:
Various techniques are disclosed for systems and methods using thermal imaging to monitor an infant or other persons that may need observation. For example, an infant monitoring system may include an infrared imaging module, a visible light camera, a processor, a display, a communication module, and a memory. The monitoring system may capture thermal images of a scene including at least a partial view of an infant, using the infrared imaging module enclosed in a portable or mountable housing configured to be positioned for remote monitoring of the infant. Various thermal image processing and analysis operations may be performed on the thermal images to generate monitoring information relating to the infant. The monitoring information may include various alarms that actively provide warnings to caregivers, and user-viewable images of the scene. The monitoring information may be presented at external devices or the display located remotely for convenient viewing by caregivers.
Abstract:
Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera configured to capture thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. In some implementations, the monitoring system also includes a communication interface configured to transmit the thermal images from the infrared camera for external viewing by a user. In some implementations, the thermal images may be provided through various wired and wireless communication techniques. In some implementations, the infrared camera may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
Abstract:
Various techniques are disclosed for smart surveillance camera systems and methods using thermal imaging to intelligently control illumination and monitoring of a surveillance scene. For example, a smart camera system may include a thermal imager, an IR illuminator, a visible light illuminator, a visible/near IR (NIR) light camera, and a processor. The camera system may capture thermal images of the scene using the thermal imager, and analyze the thermal images to detect a presence and an attribute of an object in the scene. In response to the detection, various light sources may be selectively operated to illuminate the object only when needed or desired, with a suitable type of light source, with a suitable beam angle and width, or in otherwise desirable manner. The visible/NIR light camera may also be selectively operated based on the detection to capture or record surveillance images containing objects of interest.
Abstract:
A shutter assembly may be provided for an infrared imaging module to selectively block external infrared radiation from reaching infrared sensors of the infrared imaging module. For example, the shutter assembly may comprise a paddle situated external to an optical element (e.g., lens) and adapted to be selectively moved by an actuator to substantially block external infrared radiation from entering the optical element. The shutter assembly may be stacked relative to a housing of the infrared imaging module without excessively increasing the overall profile of the infrared imaging module. A substantially reflective low emissivity interior surface may be provided on the paddle to reflect infrared radiation originating from an infrared sensor assembly of the infrared imaging module back to the infrared sensor assembly.
Abstract:
Various techniques are disclosed for providing a wearable apparatus having an integrated infrared imaging module. In one example, a wearable apparatus implemented as a self-contained breathing apparatus (SCBA) may include a shield to protect a user from an external environment, one or more infrared imaging modules, a projector, a processor, and a communication module for projecting a user-viewable thermal image onto a surface of the shield. Such infrared imaging modules may be positioned internal to the SCBA for protection from a hazardous external environment. In another example, a wearable apparatus implemented as a welding mask may include one or more infrared imaging modules, a projector, a processor, and a communication module, so as to project a user-viewable thermal image onto a surface of a shield of the welding mask, while at the same time protecting these components and the welder's face from a harsh welding environment.
Abstract:
Various techniques are disclosed for smart surveillance camera systems and methods using thermal imaging to intelligently control illumination and monitoring of a surveillance scene. For example, a smart camera system may include a thermal imager, an IR illuminator, a visible light illuminator, a visible/near IR (NIR) light camera, and a processor. The camera system may capture thermal images of the scene using the thermal imager, and analyze the thermal images to detect a presence and an attribute of an object in the scene. In response to the detection, various light sources may be selectively operated to illuminate the object only when needed or desired, with a suitable type of light source, with a suitable beam angle and width, or in otherwise desirable manner The visible/NIR light camera may also be selectively operated based on the detection to capture or record surveillance images containing objects of interest.