Abstract:
Aft frame assemblies for a gas turbine transition pieces include a body comprising an exterior surface and a plurality of interior surfaces, one or more exterior cooling holes disposed on the exterior surface of the body for capturing compressor discharge air outside of the transition piece, and a supplemental component bonded to at least one of the plurality of interior surfaces of the body. At least one cooling channel is at least partially defined by the supplemental component and the interior surface that the supplemental component is bonded to, wherein the at least one cooling channel fluidly connects at least one of the one or more exterior cooling holes to one or more interior cooling outlets that discharge the compressor discharge air captured from the at least one of the one or more exterior cooling holes.
Abstract:
A method of manufacturing a component and a method of thermal management are provided. The methods include forming at least one portion of the component, printing a cooling member of the component and attaching the at least one portion to the cooling member of the component. The cooling member includes at least one cooling feature. The at least one cooling feature includes at least one cooling channel adjacent to a surface of the component, wherein printing allows for near-net shape geometry of the cooling member with the at least one cooling channel being located within a range of about 127 (0.005 inches) to about 762 micrometers (0.030 inches) from the surface of the component. The method of thermal management also includes transporting a fluid through at least one fluid pathway defined by the at least one cooling channel within the component to cool the component.
Abstract:
A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate.
Abstract:
An article includes a substrate and a structure including direct metal laser melted material of predetermined thickness attached to the substrate, the structure formed by providing and depositing a metal alloy powder to form an initial layer having a preselected thickness and shape including at least one aperture, melting the metal alloy powder with a focused energy source, transforming the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder over the sheet of metal alloy, the additional preselected shape including an aperture corresponding to the aperture in the initial layer, and melting each additional layer of the metal alloy powder with the focused energy source, increasing the thickness of the sheet and forming at least one aperture having a predetermined profile, the article further including a passageway through the structure including the aperture and a corresponding metering hole.
Abstract:
A nozzle has a main body having an input side and an output side, a central region and two opposing end regions. A plurality of linearly arranged apertures extend from the input side to the output side, and each of the apertures has a respective opening. At least one opening in the central region is smaller than at least one opening in the end regions.
Abstract:
An article and method of forming an article are provided. The article includes a body portion separating an inner region and an outer region, an aperture in the body portion, the aperture fluidly connecting the inner region and the outer region, and a baffle extending along at least a portion of an inner surface of the article, the baffle dividing the inner region into a plurality of sub-regions. The method of forming an article includes forming a body portion defining an inner region and an outer region, forming an aperture in the body portion, the aperture fluidly connecting the inner region to the outer region, and forming at least one baffle extending along at least a portion of an inner surface of the body portion, the at least one baffle dividing the inner region into a plurality of sub-regions. Also provided is a component including a cooling article disposed therein.
Abstract:
A cooled article and a method of forming a cooled article are disclosed. The cooled article includes a component, a porous material incorporated into the component, and a cooling medium within the porous material. Another cooled article is formed by a process includes the steps of forming a porous material from a pre-sintered preform, providing a component, and incorporating the porous material into the component. The porous material is in fluid communication with a cooling medium. The method of forming a cooled article includes providing a metal felt material infused with braze filler material, pre-sintering the metal felt material to form a porous material, providing a component, and incorporating the porous material into the component.
Abstract:
A cooled structure of a gas turbine engine has a main body with a leading edge, a trailing edge, a first side portion, a second side portion, and a cavity. A first set of cooling air micro-channels extends from the cavity and is arranged along the first side portion. A second set of cooling air micro-channels extends from the cavity and is arranged along the second side portion. The first and second set of cooling air micro-channels have turning portions positioned adjacent each other and interwoven exhaust ends originating from each opposing side micro-channel. Each interwoven exhaust end extends around the opposing turning portion and is configured to exhaust cooling air from a plurality of exhaust ports positioned generally radially outward from the turning portions.
Abstract:
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.
Abstract:
Methods for aligning a pair of calibrated lasers of a laser additive manufacturing system in an overlap region in which the pair of calibrated lasers selectively operate are provided. Respective first and second plurality of layers of a test structure are formed in the overlap region of the pair of calibrated lasers solely using a first calibrated laser of the pair of calibrated lasers and then solely using a second calibrated laser of the pair of calibrated lasers. The test structure forming creates an outer surface of the test structure corresponding to the overlap region. A dimension(s) of an offset step(s) created between the first plurality of layers and the second plurality of lasers in the outer surface of the test structure is/are measured. The lasers are aligned by applying the dimension(s) of the offset step(s) as an alignment correction(s) to at least one of the pair of calibrated lasers.