Abstract:
A wearable computing device includes a bone conduction transducer, an extension arm, a light pass hole, and a flexible touch pad input circuit. When a user wears the device, the transducer contacts the user's head. A display is attached to a free end of an extension arm. The extension arm is pivotable such that a distance between the display and the user's eye is adjustable to provide the display at an optimum position. The light pass hole may include a light emitting diode and a flash. The touch pad input circuit may be adhered to at least one side arm such that parting lines are not provided between edges of the circuit and the side arm.
Abstract:
Apparatuses that provide a bone-conduction speaker arranged to be located behind the ear are described herein. An exemplary apparatus may include: (a) a glasses-style support structure comprising a front section and at least one side section; (b) at least one bone-conduction speaker; and (c) a member having a proximate end and a distal end, wherein the proximate end is attached to the at least one side section, and wherein the at least one bone-conduction speaker is attached to the member at or near the distal end; wherein the member is arranged on the at least one side section such that when the glasses-style support structure is worn the member: (a) extends to the anterior of the at least one side section and (b) locates the bone-conduction speaker posterior to an ear.
Abstract:
The present application describes bone conduction microphone (BCM) systems and applications thereof. An example apparatus includes: (a) an enclosing structure having a cavity therein, wherein a first portion of the enclosing structure is formed by an elastic material, and wherein the elastic material is moveable to transfer vibration from an exterior source to gas within the cavity; and (b) a microphone coupled to the enclosing structure and located within the gas-filled cavity, wherein gas in the cavity separates the microphone from the first portion of the enclosing structure, such that the vibration transferred from the exterior source to the gas in the cavity is detectable by the microphone.
Abstract:
Disclosed are systems and devices for transmission of an audio signal. In some embodiments, the system may include a wearable computing device, a first audio receiver, and a second audio receiver. The wearable computing device may include an audio source configured to generate an audio signal that includes a first channel and a second channel, and a transmission coil configured to transmit the audio signal. The first audio receiver may include a first receiving coil configured to receive the audio signal, a first circuit configured to process the audio signal to determine the first channel, and a first audio output configured to output the first channel. Similarly, the second audio receiver may include a second receiving coil configured to receive the audio signal, a second circuit configured to process the audio signal to determine the second channel, and a second audio output configured to output the second channel.
Abstract:
Disclosed herein are methods and apparatuses for the transmission of audio information from a bone-conduction headset to a user. The bone-conduction headset may be mounted on a glasses-style support structure. The bone-conduction transducer may be mounted near where the glasses-style support structure approach a wearer's ears. In one embodiment, an apparatus has a bone-conduction transducer with a diaphragm configured to vibrate based on a magnetic field. The magnetic field being based off an applied electric field. The apparatus may also have an anvil coupled to the diaphragm. The anvil may be configured to conduct the vibration from the bone-conduction transducer. Additionally, the anvil may be coupled to a metallic component. The metallic component may be configured to couple to a magnetic field created by the bone-conduction transducer.
Abstract:
A wearable computing device can receive, via at least one input transducer, a first audio signal associated with ambient sound from an environment of the device. The device can then process the first audio signal so as to determine a second audio signal that is out of phase with the first audio signal and effective to substantially cancel at least a portion of the first audio signal. The device may then generate a noise-cancelling audio signal based on the second audio signal, based on a third audio signal, and based on one or more wearer-specific parameters, where the third audio signal is representative of a sound to be provided by the device. The device may then cause a bone conduction transducer (BCT) to vibrate so as to provide to an ear a noise-cancelling sound effective to substantially cancel at least a portion of the ambient sound.
Abstract:
Example embodiments may relate to methods and systems for adapting an array of piezoelectric transducers, placed on a head-mounted device (HMD), to different head sizes. For example, an HMD (e.g., a wearable computer) may include an array of transducers that are configured to operate as bone conduction transducers (BCTs), and alternatively as pressure sensors. In particular, methods and systems may be implemented to determine a respective power level for each vibration transducer in the array based at least in part on a determined mechanical load on each transducer in the array. Once the respective power level for each vibration transducer is determined, the system may cause each vibration transducer in the array to operate at the determined respective power level.