Abstract:
An optoelectronic transmission device includes a base, a first optical fiber, a second optical fiber, an optical signal source, a light detector, a carrier, and a monocrystalline-silicon reflector. The first optical fiber transmits first light. The second optical fiber transmits second light. The optical signal source emits the first light. The light detector receives and converts the second light into electrical signals. The carrier has a first through hole and a second through hole. The first optical fiber is received in the first through hole. The second optical fiber is received in the second through hole. The monocrystalline-silicon reflector is positioned on the base and covers the light detector and the optical signal source. The monocrystalline-silicon reflector internally totally reflects the first light from the optical signal source to the first optical fiber and internally totally reflects the second light from the second optical fiber to the light detector.
Abstract:
An optical fiber connector including a main body and a block is illustrated. The main body includes a first side, an opposite second side, and a first top surface between the first side and the second side. The first side includes at least two protruding lenses. The first top surface defines a recess, and the recess includes an open end at the second side. The block is securely retained within the recess. The block defines at least two through holes respectively aligned with the at least two lenses. Each of the at least two through holes is securely retaining one optical fiber.
Abstract:
An optical fiber connector includes an optical fiber cable including two optical fibers; and a connector plug connected to opposite ends of the optical fiber cable for electrical connection to an electronic device. The connector plug includes a shell, a photodiode, a laser diode; and an electrical connector for electrical connection to an electronic device. The photodiode, the laser diode and the electrical connector are housed in the metallic shell, the photodiode is optically coupled to a distal end of one corresponding optical fiber and electrically coupled to the electrical connector, the laser diode optically is coupled to a distal end of the other optical fiber and electrically coupled to the electrical connector.
Abstract:
An optoelectronic transmission system includes a light guide module, an optical signal source, an optical fiber, and a light detector. The light guide module includes a light guide body, and a lens formed on the light guide body. The optical signal source emits output optical signals towards the light guide body. The light guide body reflects and directs the output optical signals towards the lens. The optical fiber includes a first end and an opposing second end. The optical fiber transmits the output optical signals from the first end to the second end, and transmits input optical signals from the second end to the first end. The light guide body transmits the input optical signal therethrough. The light detector is positioned at an opposite side of the light guide module to the optical fiber. The light detector receives and converts the input optical signals into electrical signals.
Abstract:
An optical fiber coupler includes a receiving interface and two lenses. The receiving interface is configured for matching and connecting to an external optical fiber of a particular diameter within a range of 62.5 μm to 100 μm, and for receiving optical signals from the external optical fiber. The two lenses are configured for coupling the received optical signals. A distance between the two lenses falls within a range from 0.5 mm to 0.95 mm. A curvature radius of each of the two lenses falls within a range from 0.3579 mm to 0.3898 mm.
Abstract:
A contact image sensor module includes an image sensor, a lens unit arranged over the image sensor, a glass plate arranged over the lens unit, and a light source. The lens unit includes a plurality of rod lenses. The glass plate is wedge-shaped and elongated. The glass plate includes a first light interface being rectangular and elongated, and a second light interface and an incident face respectively extending from two opposite longer sides of the first light interface. The incident face faces the light source. The first light interface is substantially perpendicular to the rod lenses. The second light interface is below the first light interface and faces top sides of the rod lenses. Light of the light source is first directed by the glass plate to the document, then reflected by the document to the lens unit via the glass plate and finally reaching the image sensor.
Abstract:
An exemplary light pipe includes a main pipe and branch pipes. The main pipe includes a light inputting segment, an end portion, and a light outputting segment between the light inputting segment and the end portion. The light inputting segment includes connecting openings defined therein. A distance between each connecting opening and the end portion of the main pipe is different from a distance between each other connecting opening and the end portion of the main pipe. The branch pipes connect with the light inputting segment at the respective connecting openings.
Abstract:
An optical fiber connector assembly includes optical fibers, a first connector, electric wires, and a second connector. The first connector receives the optical fibers. The second connector includes a coupling portion and a conversion portion. The coupling portion is mechanically engaged with the first connector and includes lenses optically coupled to the respective optical fibers. The conversion portion receives the electric wires and includes light detectors electrically connected to the corresponding electric wires and configured for receiving and converting optical signals into electrical signals.
Abstract:
A photoelectric converter for optical signals includes a laser diode for emitting the optical signals, an optical transmission module for transmitting the optical signals, and a photo diode for converting the optical signals to electrical signals. The optical transmission module includes lenses oriented at ninety degrees from each other, with total internal reflection between the lenses, and optical fibers coupled with the lenses. The photoelectric converter has a high coupling precision between the lenses and the optical fibers, and the loss of optical signals is minimized.
Abstract:
An optical fiber connector includes a main body, a number of lens portions, a number of restricting members, and a number of optical fibers. The main body includes a first side surface and a second side surface opposite to the first side surface. The main body defines a cavity between the first and second side surfaces, and a number of accommodating holes extending through the first side surface and communicating with the cavity. The lens portions are positioned on the second side surface, and each lens portion is coaxial with a corresponding accommodating hole. The restricting members are arranged in the cavity. The optical fibers are fixed in the accommodating holes. Each optical fiber is restricted by a corresponding restricting member and an end of each optical fiber is fixed at the focal plane of a corresponding lens portion.