Abstract:
In-package radio frequency (RF) waveguides as high bandwidth chip-to-chip interconnects and methods for using the same are disclosed. In one example, an electronic package includes a package substrate, first and second silicon dies or tiles, and an RF waveguide. The first and second silicon dies or tiles are attached to the package substrate. The RF waveguide is formed in the package substrate and interconnects the first silicon die or tile with the second silicon die or tile.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first substrate having organic dielectric material, conductive layers, and a first portion of a distributed antenna unit. The first substrate supports at least one radio frequency (RF) component. A second substrate is coupled to the first substrate. The second substrate is integrated with a housing of the microelectronic device and includes a second portion of the distributed antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
Abstract:
A method of making a waveguide ribbon that includes a plurality of waveguides comprises joining a first sheet of dielectric material to a first conductive sheet of conductive material, patterning the first sheet of dielectric material to form a plurality of dielectric waveguide cores on the first conductive sheet, and coating the dielectric waveguide cores with substantially the same conductive material as the conductive sheet to form the plurality of waveguides.
Abstract:
Embodiments are generally directed to non-planar on-package via capacitor. An embodiment of an embedded capacitor includes a first plate that is formed in a package via; a dielectric layer that is applied on the first plate; and a second plate that is formed in a cavity in the dielectric layer, wherein the first plate and the second plate are non-planar plates.
Abstract:
A waveguide coupling system may include at least one waveguide member retention structure disposed on an exterior surface of a semiconductor package. The waveguide member retention structure may be disposed a defined distance or at a defined location with respect to an antenna carried by the semiconductor package. The waveguide member retention structure may engage and guide a waveguide member slideably inserted into the respective waveguide member retention structure. The waveguide member retention structure may position the waveguide member at a defined location with respect to the antenna to maximize the power transfer from the antenna to the waveguide member.
Abstract:
Embodiments of the invention include delay line circuitry that is integrated with an organic substrate. Organic dielectric material and a plurality of conductive layers form the organic substrate. The delay line circuitry includes a piezoelectric transducer to receive a guided electromagnetic wave signal and to generate an acoustic wave signal to be transmitted with an acoustic transmission medium. An acoustic reflector is communicatively coupled to the acoustic transmission medium. The acoustic reflector receives a plurality of acoustic wave signals from the acoustic transmission medium and reflects acoustic wave signals to the piezoelectric transducer using the acoustic transmission medium. The transducer converts the reflected acoustic signals into electromagnetic waves which are then transmitted back through the antenna and decoded by the reader.
Abstract:
Embodiments of the invention include a tunable radio frequency (RF) communication module that includes a transmitting component having at least one tunable component and a receiving component having at least one tunable component. The tunable RF communication module includes at least one piezoelectric switching device coupled to at least one of the transmitting and receiving components. The at least one piezoelectric switching device is formed within an organic substrate having organic material and is designed to tune at least one tunable component of the tunable RF communication module.
Abstract:
Embodiments of the invention include a piezoelectric resonator which includes an input transducer having a first piezoelectric material, a vibrating structure coupled to the input transducer, and an output transducer coupled to the vibrating structure. In one example, the vibrating structure is positioned above a cavity of an organic substrate. The output transducer includes a second piezoelectric material. In operation the input transducer causes an input electrical signal to be converted into mechanical vibrations which propagate across the vibrating structure to the output transducer.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first die having a silicon based substrate and a second die coupled to the first die. In one example, the second die is formed with compound semiconductor materials. The microelectronic device includes a substrate that is coupled to the first die with a plurality of electrical connections. The substrate including an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
Abstract:
Embodiments of the invention may include a packaged device that includes thermally stable radio frequency integrated circuits (RFICs). In one embodiment the packaged device may include an integrated circuit chip mounted to a package substrate. According to an embodiment, the package substrate may have conductive lines that communicatively couple the integrated circuit chip to one or more external components. One of the external components may be an RFIC module. The RFIC module may comprise an RFIC and an antenna. Additional embodiments may also include a packaged device that includes a plurality of cooling spots formed into the package substrate. In an embodiment the cooling spots may be formed proximate to interconnect lines the communicatively couple the integrated circuit chip to the RFIC.