Abstract:
An embodiment includes a memory comprising: a top electrode and a bottom electrode; an oxygen exchange layer (OEL) between the top and bottom electrodes; a first oxide layer between the OEL and the bottom electrode; and a second oxide layer between the first oxide layer and the bottom electrode; wherein (a) a first plurality of oxygen vacancies are within the first oxide layer and are adjacent the OEL at a first concentration, (b) a second plurality of oxygen vacancies are within the first oxide layer and are adjacent the second oxide layer at a second concentration that is less than the first concentration, and (c) the first oxide layer includes a first oxide material different from a second oxide material included in the second oxide layer. Other embodiments are described herein.
Abstract:
Heterojunction tunnel field effect transistors (hTFETs) incorporating one or more oxide semiconductor and a band offset between at least one of a channel material, a source material of a first conductivity type, and drain of a second conductivity type, complementary to the first. In some embodiments, at least one of p-type material, channel material and n-type material comprises an oxide semiconductor. In some embodiments, two or more of p-type material, channel material, and n-type material comprises an oxide semiconductor. In some n-type hTFET embodiments, all of p-type, channel, and n-type materials are oxide semiconductors with a type-II or type-III band offset between the p-type and channel material.
Abstract:
In one embodiment, the present invention includes an apparatus having a substrate, a buried oxide layer formed on the substrate, a silicon on insulator (SOI) core formed on the buried oxide layer, a compressive strained quantum well (QW) layer wrapped around the SOI core, and a tensile strained silicon layer wrapped around the QW layer. Other embodiments are described and claimed.
Abstract:
The present disclosure provides a system and method for forming a resistive random access memory (RRAM) device. A RRAM device consistent with the present disclosure includes a substrate and a first electrode disposed thereon. The RRAM device includes a second electrode disposed over the first electrode and a RRAM dielectric layer disposed between the first electrode and the second electrode. The RRAM dielectric layer has a recess at a top center portion at the interface between the second electrode and the RRAM dielectric layer.
Abstract:
A memory device structure includes a vertical transistor having a channel between a source and a drain, a gate electrode adjacent the channel, where the gate electrode is in a first direction orthogonal to a longitudinal axis of the channel. A gate dielectric layer is between the gate electrode and the channel A first terminal of a first interconnect is coupled with the source or the drain, where the first interconnect is colinear with the longitudinal axis. The memory device structure further includes a pair of memory cells, where individual ones of the memory cells includes a selector and a memory element, where a first terminal of the individual ones of the memory cell is coupled to a respective second and a third terminal of the first interconnect. A second terminal of the individual ones of the memory cell is coupled to individual ones of the pair of second interconnects.
Abstract:
A ferroelectric field-effect transistor (FeFET) includes first and second gate electrodes, source and drain regions, a semiconductor region between and physically connecting the source and drain regions, a first gate dielectric between the semiconductor region and the first gate electrode, and a second gate dielectric between the semiconductor region and the second gate electrode. The first gate dielectric includes a ferroelectric dielectric. In an embodiment, a memory cell includes this FeFET, with the first gate electrode being electrically connected to a wordline and the drain region being electrically connected to a bitline. In another embodiment, a memory array includes wordlines extending in a first direction, bitlines extending in a second direction, and a plurality of such memory cells at crossing regions of the wordlines and the bitlines. In each memory cell, the wordline is a corresponding one of the wordlines and the bitline is a corresponding one of the bitlines.
Abstract:
An integrated circuit structure includes a first sub-fin, a second sub-fin laterally spaced from the first sub-fin, a first transistor device over the first sub-fin and having a first contact, a second transistor device over the second sub-fin and having a second contact, and a continuous and monolithic body of conductive material extending vertically between the first and second transistor devices and the first and second sub-fins. The body of conductive material has (i) an upper portion between the first and second transistor devices and (ii) a lower portion between the first and second sub-fins. A continuous conformal layer extends along a sidewall of the lower portion of the body and a sidewall of the upper portion of the body. The integrated circuit structure further comprises a conductive interconnect feature connecting the upper portion of the body to at least one of the first and second contacts.
Abstract:
Multi-plate MIM capacitors include a staircase structure, with steps including a high-k capacitor dielectric and one or more electrode plates. Contacts pass through insulator fill material and land on the electrode plate of a respective step. A recess passes through the staircase structure. In some examples, the recess is filled with insulator material, and steps of the staircase structure have a bilayer structure (e.g., lower layer of capacitor dielectric and upper layer of capacitor electrode plate). In other examples, the recess is filled with conductive material. In such cases, steps of the staircase structure have a multilayer structure that includes an upper portion and a lower portion. The lower portion includes insulator material and the upper portion includes a layer of capacitor dielectric between first and second capacitor electrode plates, with the second capacitor electrode plates being continuous with, or otherwise in contact with, the conductive material in the recess.
Abstract:
Embodiments herein describe techniques for an optical device including a substrate of a wafer. An image sensor device is formed on a front side of the substrate, while a plurality of posts of a metasurface lens are formed on a backside opposite to the front side of the substrate. A post of the plurality of posts includes a metasurface material that is transparent to light. Other embodiments may be described and/or claimed.
Abstract:
IC device including back-end-of-line (BEOL) transistors with crystalline channel material. A BEOL crystalline seed may be formed over a dielectric layer that has been planarized over a front-end-of-line (FEOL) transistor level that employs a monocrystalline substrate semiconductor. The BEOL crystalline seed may be epitaxial to the substrate semiconductor, or may have crystallinity independent of that of the substrate semiconductor. The BEOL crystalline seed may comprise a first material having a higher melt temperature than a melt material formed over the seed and over the dielectric layer. Through rapid melt growth, the melt material may be heated to a temperature sufficient to transition from an as-deposited state to a more crystalline state that is derived from, and therefore associated with, the BEOL crystalline seed. A BEOL transistor may then be fabricated from the crystallized material.