Abstract:
Some demonstrative embodiments include devices, systems of steering data radio bearer traffic to a wireless local area network link. For example, a User Equipment (UE) may include a Wireless Local Area Network (WLAN) transceiver; a cellular transceiver to communicate traffic of a plurality of Data Radio Bearers (DRBs) via a cellular link between the UE and an evolved Node B (eNB); and a controller to establish at least one Point-to-Point (P2P) link with the eNB via a WLAN link between the UE and a WLAN Access Point (AP), and to steer traffic of one or more of the DRBs from the cellular link to the P2P link.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods to establish a connection to the Internet via a local gateway (L-GW) function for a LIPA or a SIPTO@LN. The establishment of the connection to the Internet may be performed, for example, by at least one of an E-RAB SETUP procedure, an INITIAL CONTEXT SETUP procedure, an INITIAL UE MESSAGE procedure or an UPLINK NAS TRANSPORT procedure.
Abstract:
Session continuity may be maintained when communication devices transition from communicating through network infrastructure (e.g., through a cellular network) to direct mode communications (e.g., a communication path directly between two communication devices). For example, in switching from an infrastructure mode communication path to a direct mode communication path, a method may include: determining a public-facing address corresponding to the infrastructure path; replacing, for a packet that is to be transmitted over the direct mode communication path to a second communication device, a source address field of the packet with the determined public-facing address; and encapsulating the packet with source and destination address fields corresponding to the first and second communication device through the direct mode communication path respectively.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of securing communication between awareness networking devices. For example, an apparatus may include logic and circuitry configured to cause a first Neighbor Awareness Networking (NAN) device to discover a second NAN device according to a NAN discovery scheme; transmit to the second NAN device a first message signed with a signing key of the first NAN device, the first message comprising a first public security key of the first NAN device and a first public verification key of the first NAN device; process a second message received from the second NAN device, the second message signed with a signing key of the second NAN device and comprising a second public security key of the second NAN device and a second public verification key of the second NAN device; determine a session security key, based on the first and second public security keys; and establish a secure session with the second NAN device using the session security key.
Abstract:
Some demonstrative embodiments include devices, systems and methods of providing offloadability information to a User Equipment (UE). For example, a core network (CN) may provide to the UE Packet Data Network (PDN) offloadability information corresponding to one or more PDN connections of the UE, the PDN offloadability information indicating which PDN connection of the one or more PDN connections is able to be offloaded to a Wireless Local Area Network (WLAN).
Abstract:
Technology to provide quality of experience aware multimedia streaming is disclosed. In an example, a server operable to provide hyper-text transfer protocol (HTTP) adaptive streaming, can include computer circuitry configured to: determine a bandwidth available to the server for transmitting HTTP adaptive streaming content to a plurality of clients; receive HTTP requests from the plurality of clients for representations offered by the server in a manifest file for the HTTP adaptive streaming; and calculate an availability of each representation that is offered in the manifest file for the server. The availability can be calculated, at least in part, based on the determined bandwidth. The availability of each representation can be communicated from the server to the plurality of clients.
Abstract:
Technology to provide quality of experience aware multimedia streaming is disclosed. In an example, a server operable to provide hyper-text transfer protocol (HTTP) adaptive streaming, can include computer circuitry configured to: determine a bandwidth available to the server for transmitting HTTP adaptive streaming content to a plurality of clients; receive HTTP requests from the plurality of clients for representations offered by the server in a manifest file for the HTTP adaptive streaming; and calculate an availability of each representation that is offered in the manifest file for the server. The availability can be calculated, at least in part, based on the determined bandwidth. The availability of each representation can be communicated from the server to the plurality of clients.
Abstract:
In one embodiment, the present disclosure provides a self-optimizing network (SON) coordination module that includes a conflict detection module configured to receive operational information from at least one capacity and coverage optimization (CCO) module and at least one of an energy savings management (ESM) and/or a cell outage compensation (COC) module, wherein the at least one CCO module and the at least one of the ESM module and/or the COC module are associated with at least one eNodeB (eNB) in communication with the conflict detection module. The conflict detection module is configured to determine a conflict between operational information of the CCO module and at least one of the ESM module and/or the COC module. The SON coordination module also includes a conflict resolution module configured to resolve a conflict between the operational information of the CCO module and at least one of the ESM module and/or the COC module based on, at least in part, one or more conflict resolution rules.
Abstract:
Methods, systems, and devices for network selection are disclosed herein. User equipment (UE) includes a communication component, a rules component, and a network selection component. The communication component may be configured to communicate over a 3GPP network and a non-cellular network. The rules component may be configured to store an access network discovery and selection function (ANDSF) management object (MO) that includes wireless local area network (WLAN) selection policies for network selection on the UE. The WLAN selection policies may include interworking WLAN (I-WLAN) policies and Hotspot 2.0 (HS2.0) parameters. The network selection component is configured to select an available WLAN based on the ANDSF MO.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating non-cellular access network information via a cellular network. For example, an Evolved Node B (eNB) may include a radio to transmit a control message over a cellular communication medium, the control message including access network information of at least one non-cellular network within a coverage area of the eNB.