Abstract:
Connection management techniques for wireless network mobility procedures are described. In one embodiment, for example, an evolved packet core (EPC) node may comprise a processor circuit to receive a notification of a mobility procedure for a user equipment (UE), determine whether to release a local gateway (L-GW)-provided packet data network (PDN) connection of the UE, and in response to a determination that the L-GW-provided PDN connection is to be released, send either a detach request message or a delete session request message to initiate a process for releasing the L-GW-provided PDN connection. Other embodiments are described and claimed.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for establishing a direct connection between two UEs. Each UE may be provisioned with a temporary identifier by a server of a wireless network of the UE. The UEs may then be configured to broadcast the temporary IDs in radio signals over radio resources that are separate from the radio resources of the network. The temporary IDs may not contain identifying information of the broadcasting UE that is interpretable without receiving further information from the network.
Abstract:
The application relates to a UE, which is the initiator, that needs to communicate with another UE, which is the target, and which is not in proximity. Then the initiator tries to communicate with the target via a UE-to-UE Relay. Solutions for this problem are discussed e.g. in 3GPP TR 23.713, passage 7.3 and corresponding submissions to work items ProSe/Rel-12 and ProSe/Rel-13.The application in particular proposes that Layer-3 relaying is being used, whereby IP addresses of the respective UEs are assigned and exchanged (312, 314) such that IP communication between the initiator (102) and the target (106) can be performed (320) via the UE-to-UE Relay (104).
Abstract:
Examples may include techniques for securely receiving critical communication content associated with a critical communication service. Examples may include a network providing the critical communication being capable of establishing a secure connection to remote user equipment (UE) through a relay UE in order for the remote UE to securely receive critical communication content from the network. The critical communication service may include a mission critical push to talk (MCPTT) service.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of establishing a connection between a cellular node and a core network. For example, a first Evolved Node B (eNB) may include a cellular transceiver to communicate with a User Equipment (UE); an X2 interface to communicate with at least one second eNB; and a controller to send to the second eNB a first message including a core network node discovery request, to receive from the second eNB a second message including a core network node identifier, and to establish an S1 connection between the first eNB and a core network using the core network node identifier.
Abstract:
Some demonstrative embodiments include devices, systems of securing communications of a User Equipment (UE) in a Wireless Local Area Network (WLAN). For example, a cellular node may transmit to a UE a cellular message including a UE security key, and a WLAN access device may communicate with the cellular node security information including the UE security key. The WLAN access device may communicate with the UE based on the UE security key, e.g., to authenticate the UE and/or encrypt communications with the UE.
Abstract:
A technology for network-level device proximity detection is disclosed. In an example, core network (CN) device can include computer circuitry configured to: Store user equipment (UE) information; calculate proximity between two UEs; and assist the two UEs with direct device discovery based on the calculated proximity. The core network device can include a proximity services (ProSe) server, a gateway mobile location center (GMLC), an evolved serving mobile location center (E-SMLC), or a mobility management entity (MME).
Abstract:
Briefly, in accordance with one or more embodiments, user equipment (UE) comprises processing circuitry to connect to a network via an untrusted wireless local area network (WLAN) and determine a location of the UE to provide the location of the UE if a voice call is made by the UE via the untrusted WLAN. The UE provides the location of the UE to a Public-Safety Answering Point (PSAP) via one or more network nodes of the network via the untrusted WLAN.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of securing communication between awareness networking devices. For example, a first Neighbor Awareness Networking (NAN) device may discover a second NAN device according to a NAN discovery scheme; transmit to the second NAN device a first message signed with a signing key of the first NAN device, the first message comprising a first public security key of the first NAN device; process a second message received from the second NAN device, the second message signed with a signing key of the second NAN device and comprising a second public security key of the second NAN device; determine a session security key, based on the first and second public security keys; and establish a secure session with the second NAN device using the session security key.