Abstract:
Method and apparatus employed by wireless network (10) components such as access points (APs) (10) for controlling transmitting power level of individual wireless transmitter/receiver units (WTRUs) (10) by establishing a power transmit level based on prior transmit and receiving transmission and reception statistics (S7)such as signal to noise ratio (SNR), bit error rate (BER), frame error rate (FER) and/or the like. Power transmit level information is preferably communicated through any one of a clear to send (CTS), request to send (RTS), data and acknowledge (ACK) frame. Alternatively the power control information may be inserted into a beacon frame or an individual control frame specifically designated for power control. The WTRUs preferably have battery level sensors (S2) and adjust power control level responsive to a sensed battery level (S4). Alternatively, the APs and WTRUs may reverse roles and the WTRUs may provide power transmit level information to an AP to facilitate transmissions by the AP.
Abstract:
A method and system for controlling access to a medium in a wireless communication system. A superframe structure is defined in time domain to include a contention free period (CFP) which has at least one scheduled resource allocation (SRA) (3712), at least one management SRA (MSRA) (3718) and a contention period. An extended beacon (EB) (3746) including information about the SRA and MSRA is transmitted for. The architecture reduces station battery consumption, supports higher throughput for non-real time (NRT) traffic and is more efficient for real time (RT) traffic while maintaining full compatibility.
Abstract:
A transmitter may instruct a receiver to move a receive window if the transmitter cannot retransmit a packet in response to an automatic repeat request (ARQ) status report and a hybrid ARQ (HARQ) feedback error report. The transmitter may advance a transmit window upon receipt of a local acknowledgement if the packet is in an ongoing flow and advance the transmit window when the packet is acknowledged by a status report if the packet is an isolated packet. The transmitter may perform a retransmission based on context in which the retransmission is requested. The transmitter may send an acknowledgement to the status report or the HARQ feedback error report. The transmitter may specify whether an HARQ feedback error report or a status report is allowed. The receiver may adjust the level of robustness and error protection for the HARQ feedback based on an indication from the transmitter.
Abstract:
A method and apparatus are provided for dynamic resource allocation, scheduling and signaling for variable data real time services (RTS) in long term evolution (LTE) systems. Preferably, changes in data rate for uplink RTS traffic are reported to an evolved Node B (eNB) by a UE using layer 1, 2 or 3 signaling. The eNB dynamically allocates physical resources in response to a change in data rate by adding or removing radio blocks currently assigned to the data flow, and the eNB signals the new resource assignment to the UE. In an alternate embodiment, tables stored at the eNB and the UE describe mappings of RTS data rates to physical resources under certain channel conditions, such that the UE uses the table to locally assign physical resources according to changes in UL data rates. Additionally, a method and apparatus for high level configuration of RTS data flows is also presented.
Abstract:
A method and system for implementing hybrid automatic repeat request (H-ARQ)-assisted automatic repeat request (ARQ) in a wireless communication system are disclosed. When an H-ARQ negative acknowledgement (NACK)-to-positive acknowledgement (ACK) error occurs, the H-ARQ receiver sends an H-ARQ NACK-to-ACK error indicator to the H-ARQ transmitter unless a maximum retransmission limit has reached, a maximum time for delivery has expired or a lifespan of the failed packet has expired. The H-ARQ transmitter sends a local NACK to the ARQ transmitter so that the failed packet is recovered at an ARQ level. The H-ARQ receiver sends a local NACK to the ARQ receiver if the H-ARQ receiver does not receive the failed packet before certain conditions occur. The ARQ receiver may send a status report to the ARQ transmitter for recovery of the failed packet.
Abstract:
A method for transmitting a packet from a transmitter to a receiver in a wireless communication system begins by building a packet by a transport format combination (TFC) selection process, and the packet is transmitted from the transmitter to the receiver. If the transmitter receives an indication that the packet was not successfully received at the receiver, the packet is retransmitted via a hybrid automatic repeat request (HARQ) procedure. If the HARQ procedure did not successfully transmit the packet, then the packet is retransmitted via a retransmission management (RM) procedure. If the RM procedure did not successfully transmit the packet, then the packet is discarded by the transmitter.
Abstract:
An access point (14) operates in an 802.11 wireless communication network (10) communicating with a client station (12), and includes a smart antenna (16) for generating directional antenna beams (20) and an omni-directional antenna beam (22). An antenna steering algorithm (18) scans the directional antenna beams and the omni-directional antenna beam for receiving signals from the client station (12). The signals received via each scanned antenna beam are measured, and on of the antenna beams is selected based upon the measuring for communicating with the client station (12). The selected antenna beam is preferably a directional antenna beam. Once the directional antenna beam has been selected, there are several usage rules for exchanging data with the client station (12). The usage rules are directed to an active state of the access point (14), which includes a data transmission mode and a data reception mode.
Abstract:
An apparatus and a method for improving packet transmission and reducing latency in VOIP over using switched beam antennas having multiple directional antenna beams are disclosed. In an access point (200) having a switched beam antenna (220A and 220B), or other smart antenna system, the present invention extends the coverage area of an access point for authentication and association of a new WTRU (205), extends the access points (200) coverage area during in session transmissions with a WTRU, and adjusts data rates. The method also controls Contention Period (Cpl/contention Free Period (CFP) timing amongst beams emanating from an access point (200) having a switched beam antenna, or other smart antenna system. Fast diversity switching, frame level switching, lowered data rates, and scanning multiple directional antenna beams for the optimum transmission beam are disclosed to improve beam selection and packet transmission.
Abstract:
Method and system for reducing battery consumption during an active session wherein an access point (AP) transmits a wireless transmit/receive unit (WTRU) a packet information regarding packets in a queue waiting for transmission to the WTRU and when the packets are to be decoded, whereby enabling the WTRU to enter or remain in an OFF mode in accordance with the packet information. The AP does not send the packets to the WTRU until the AP informs the WTRU about the packet.
Abstract:
A method for taking measurements with a smart antenna in a wireless communication system having a plurality of STAs begins by sending a measurement request from a first STA to a second STA. At least two measurement packets are transmitted from the second STA to the first STA. Each measurement packet is received at the first STA using a different antenna beam. The first STA performs measurements on each measurement packet and selects an antenna beam direction based on the measurement results.