Abstract:
A multi-node communication system and method used to request, report and collect destination-node-based measurements and route-based measurements is disclosed. The communication system may be a mesh network including a plurality of mesh points (MPs). In one embodiment, a destination-node-based measurement request is sent to one or more destination nodes via destination-unicast, destination-multicast, or destination-broadcast, using routes specified via next-hop-unicast, next-hop-multicast, or next-hop-broadcast addressing. In another embodiment, a source node sends a measurement request message to a final destination node, whereby each node along the route individually sends a measurement report message to the source node. Alternatively, measurement results of each node are combined and appended to the measurement request message, and a measurement report message including the combined measurement results is sent to the source node.
Abstract:
A wireless communication system including a mesh network having a plurality of mesh points (MPs), a plurality of wireless transmit/receive units 106s (WTRUs), extra-mesh local area network (LAN) resources, and an external network is disclosed. When one of the MPs receives a packet, a determination is made as to whether the received packet is destined to another MP belongings to the same mesh network, (or to a WTRU served by another MP), and. if so, a determinatin is made as to whether there are at least two mesh portals (104a, 104c) in the mesh network that provide access to the external network via the extra-mesh LAN resources. The packet is routed according to an intra-mesh routing algorithm if there are less than two mesh portals hi the mesh network. Otherwise, a determination is made as to whether an extra-mesh routing algorithm or an intra-mesh routing algorithm should be used.
Abstract:
A Radio Resource Management (RRM) module (620) is provided to capture network topology information associated with a wirele communication network This information is transmitted to a Smart Antenna (SA) module (610) collocated within a network node Th SA module determines the appropriate direction, width and power of beams transmitted in the network The SA module adjusts the direction, width, and/or power of the beams accordingly A multi-purpose network node for communicating in a wireless communication network operates in a base station mode If the node detects a change in the network, it determines whether the change should trigger a change in operating modes If such a change is desired, the node switches between base station and wireless transmit/receive unit (WTRU) modes The node continues to operate in a WTRU mode until another mode tpggepng event occurs In an alternate embodiment, the multi-purpose node operates in base station and WTRU modes simultaneously.
Abstract:
The present invention is related to a method and apparatus for providing service availability information to a user in a wireless communication system. After receiving a beacon signal from a base station, a WTRU measures a power level and an interference level of the beacon signal. A target SIR and a power offset for each service is pre-defined and stored in a memory of the WTRU. A processor calculates an estimated SIR for each service, and generates a service availability indicator by dividing the estimated SIR with a target SIR for each service. A user is informed of the availability of various services simply by looking at the display of the WTRU.
Abstract:
An improved method of network management, particularly in the context of standards IEEE802.11 and IEEE802.11k, through two new MAC measurements, with attendant advantages. The two new measurements include WTRU uplink traffic loading measurement, and an AP service loading measurement and is generally applicable at least to layers 1 and 2 as applied to a least 802.11k in the context of OFDM and CDMA 2000 systems, but is applicable to other scenarios as well. A Method for determining and advertising congestion is also provided for a Wireless Local Area Network (WLAN) system. The present invention also introduces a method for managing congestion when congestion is detected. This aspect of the present invention applies primarily to wireless systems that use the Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA) mechanism. The methods are advantageously implemented in selectively configured WTRUs of various forms.
Abstract:
A method and apparatus for use by a first transceiver, (e.g., wireless transmit/receive unit (WTRU), access point (AP), node) for adjusting the transmission rate of packets transmitted to a second transceiver based on signals the first transceiver receives from the second transceiver. In one embodiment, a transmission packet error rate (Tx PER) process is used to adjust the packet transmission rate. In another embodiment, a relative signal strength indicator (RSSI)-based process is used to determine the RSSI of packets received at the first transceiver from the second transceiver for adjusting the packet transmission rate. In another embodiment, transmission quality indicators are measured at the second transceiver and are sent to the first transceiver, which derives a new packet transmission rate therefrom. The Tx PER and RSSI-based processes may be used individually, in combination, or in conjunction with other processes.
Abstract:
A method for taking measurements with a smart antenna in a wireless communication system having a plurality of STAs begins by sending a measurement request from a first STA to a second STA. At least two measurement packets are transmitted from the second STA to the first STA. Each measurement packet is received at the first STA using a different antenna beam. The first STA performs measurements on each measurement packet and selects an antenna beam direction based on the measurement results.
Abstract:
A method for implementing a smart antenna in establishing association between a station (STA) and an access point (AP) in a wireless local area network begins by transmitting a beacon frame by the AP on one antenna beam. The beacon frame is received at the STA, which measures the signal quality of the beacon frame. The AP switches to a different antenna beam and repeats the method until the beacon frame has been transmitted on all antenna beams. The STA associates to the AP that transmits the beacon frame with the highest signal quality on one of its antenna beams. A similar method may be used in which the STA sends a probe request frame to the AP, which then responds with probe response frames sent on multiple antenna beams.
Abstract:
A method for optimizing clear channel assessment (CCA) parameters in a wireless local area network having an access point (AP) and at least one station begins by receiving a trigger condition. An upper bound and a lower bound for an energy detect threshold (EDT) parameter are determined. A value of the EDT parameter is calculated and is bound by the upper bound and the lower bound. Lastly, the EDT parameter is updated. The method can be performed at each station or at the AP, with the updated CCA parameters being signaled to each station associated with the AP.
Abstract:
A method and apparatus for controlling transmit and receive power level of a mesh point (MP) operating in a mesh wireless communication network of a plurality of MPs. Power capability information of a new MP is sent to at least one existing MP in the mesh network. The existing MP accepts the new MP as a member of the mesh network and sends allowed power setting information to the new MP. The new MP adjusts its power level in accordance with the allowed power setting information.