Abstract:
A method and apparatus for estimating and correcting baseband frequency error in a receiver. In one embodiment, an equalizer performs equalization on a sample data stream and generates filter tap values based on the equalization. An estimated frequency error signal is generated based on at least one of the filter tap values. A rotating phasor is generated based on the estimated frequency error signal. The rotating phasor signal is multiplied with the sample data stream to correct the frequency of the sample data stream. In another embodiment, a channel estimator performs channel estimation and generates Rake receiver finger weights based on at least one of the finger weights. An estimated frequency error signal is generated based on at least one of the finger weights.
Abstract:
A method and apparatus for dynamically adjusting the impedance between a transmitter's power amplifier (PA) and antenna to efficiently transfer power from the PA to the antenna. The impedance between the PA and the antenna is adjusted based on power level measurements and/or PA direct current (DC) consumption measurements, depending on whether the PA is a linear PA or a switch-mode PA. In another embodiment, a hybrid PA including a first stage linear PA and a second stage switch-mode PA is implemented in a transmitter. The hybrid PA selectively connects the output of the first stage linear PA to one of the input of the second stage switch-mode PA and the output of the hybrid PA, depending on the output power level of the first stage linear PA, the output power level of the hybrid PA, or a requirement indicated by a transmit power control (TPC) command.
Abstract:
A method and system for adjusting the amplitude and phase characteristics of wireless communication signals generated by an analog radio transmitter, based on transmit power control (TPC) signals received by a base station (BS) and known characteristics of a power amplifier (PA) included in the transmitter. A digital pre-distortion compensation module, having real and imaginary signal paths, receives and processes real and imaginary signal components used to generate the wireless communication signal. The phase and amplitude characteristics of the wireless communication signal are controlled in response to the TPC signals, such that impaired amplitude and phase characteristics of the PA are corrected.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component tolerances of an analog radio, a wireless communication transmitter employs a control process to implement numerous digital signal processing (DSP) techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. By monitoring a plurality of parameters associated with the analog radio, such as temperature, bias current or the like, enhanced phase and amplitude compensation, as well as many other radio frequency (RF) parameters may be implemented.
Abstract:
In order to compensate for performance degradation caused by inferior low-cost analog radio component (105) tolerances of an analog radio (100), a future system architecture (FSA) wireless communication transceiver employs numerous digital signal processing techniques to compensate for deficiencies of such analog components so that modern specifications may be relaxed. Automatic gain control (110) functions are provided in the digital domain, so as to provide enhanced phase and amplitude compensation, as well as many other radio frequency parameters.
Abstract:
A digital baseband (DBB) radio frequency (RF) receiver includes a digital high pass filter compensation (HPFC) module used to suppress group delay variation distortion caused by using low cost analog high pass filters (HPFs) in the receiver. The digital HPFC module reduces a cutoff frequency, established by the HPFs for the real and imaginary signal component frequency domain responses by providing a first compensation signal having a first predetermined value (K1). The digital HPFC module adjusts the gain of the high pass response of the real and imaginary signal component frequency domains by providing a second compensation signal having a second predetermined value (K2).
Abstract:
A digital baseband (DBB) radio frequency (RF) receiver (105) includes a digital high pass filter compensation (HPFC) module (205) used to suppress group delay variation distortion caused by using low cost analog high pass filters (HPFO) (175A, 175B, 185A, 185B) in the receiver. The digital HPFC module (205) reduces a cutoff frequency, established by the HPFs for the real and imaginary signal component frequency domain responses by providing a first compensation signal having a first predetermined value (K1). The digital HPFC module adjusts the gain of the high pass response of the real and imaginary signal component frequency domains by providing a second compensation signal having a second predetermined value (K2).
Abstract:
A wireless transmit/receive unit (WTRU) has multiple receivers with an interface to combine received signals to provide enhanced reception. A control unit selectively controls the powering of the receivers to limit power consumption based on selected parameters.
Abstract:
A User Equipment (UE) has as circuit that performs the acquisition for the low chip rate option of the Universal Mobile Telecommunication System (UMTS) Time Division Duplex (TDD) standard as formulated by the Third Generation Partnership Project (3GPP). The present invention implements the detection (10) of the basic SYNC code; the determination (20) of the midamble used and the detection (30) of the superframe timing based on SYNC code modulation sequence. This enables reading of a full Broadcast Channel (BCH) message.