Abstract:
A nonvolatile resistive switching memory comprising an insulating substrate, a lower electrode, a lower graphene barrier layer, a resistive switching functional layer, an upper graphene barrier layer, and an upper electrode, wherein the lower and/or the upper graphene barrier layer is/are capable of preventing the metal ions/atoms in the lower/upper metal electrode from diffusing into the resistive switching functional layer under an applied electric field. According to the nonvolatile resistive switching memory device of the present invention and manufacturing method thereof, a monolayer or multilayer graphene film as a metal ions/atoms barrier layer is inserted between the upper/lower metal electrode and the resistive switching functional layer, which is capable of preventing the metal ions/atoms in the lower/upper metal electrode from diffusing into the resistive switching functional layer during the programming or erasing process of the resistive switching device, thereby improving the reliability of the device.
Abstract:
The present disclosure provides a 1S1R memory integrated structure and a method for fabricating the same, wherein the 1S1R memory integrated structure includes: a word line metal, a resistive material layer, a selector lower electrode, a selector material layer, a selector upper electrode, an interconnection wire, and a bit line metal; wherein the selector material layer is in a shape of a groove, and the selector upper electrode is formed in the groove. According to the 1S1R memory integrated structure and its fabricating method in the present disclosure, by the change of the integrated position of the selector, the device area of the selector is much larger than the device area of the memory, which significantly reduces the requirement for the on-state current density of the selector.
Abstract:
A method for evaluating the thermal effects of 3D RRAM arrays and reducing thermal crosstalk, including the following steps: Step 1: calculating the temperature distribution in the array through 3D Fourier heat conduction equation; Step 2, selecting a heat transfer mode; Step 3, selecting an appropriate array structure; Step 4, analyzing the effect of position of programming device in the array on the temperature; Step 5, analyzing the thermal crosstalk effect in the array; Step 6, evaluating thermal effects and thermal crosstalk; Step 7, changing the array structure or modify operating parameters based on the evaluation results to reduce the thermal crosstalk. According to the method of the present invention, the influence of the position of the device on the temperature is analyzed according to the heat transfer mode of the 3D RRAM array, the thermal effect and the thermal crosstalk are evaluated, and the appropriate array structure and operating parameters are selected according to the evaluation result, which effectively improves the thermal stability of the device.
Abstract:
There is provided a three-terminal atomic switching device and a method of manufacturing the same, which belongs to the field of microelectronics manufacturing and memory technology. The three-terminal atomic switching device includes: a stack structure including a source terminal and a drain terminal; a vertical trench formed by etching the stack structure; an M8XY6 channel layer formed on an inner wall and a bottom of the vertical trench; and a control terminal formed on a surface of the M8XY6 channel layer, wherein the control terminal fills the vertical trench. The source terminal resistance and the drain terminal resistance are controlled by the control terminal. The invention is based on the three-terminal atomic switching device, and realizes high switching ratio characteristic, simple structure, easy integration, high density and low cost due to high non-linearity of the source-drain resistance with respect to the control terminal voltage, and thus can be used in a gated device in a cross-array structure to inhibit a crosstalk phenomenon caused by the leakage current. The three-terminal atomic switching device proposed by the invention is suitable for a planar stacked cross-array structure and a vertical cross-array structure, so as to realize high-density three-dimensional storage.
Abstract:
A nonvolatile resistive switching memory, comprising an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode, and characterized in that: a graphene barrier layer is inserted between the inert metal electrode and the resistive switching functional layer, which is capable of preventing the easily oxidizable metal ions from migrating into the inert metal electrode through the resistive switching functional layer under the action of electric field during the programming of the device. The manufacturing method therefore comprises adding a monolayer or multilayer graphene thin film between the inert electrode and the solid-state electrolyte resistive switching functional layer which services as a metal ion barrier layer to stop electrically-conductive metal filaments formed in the resistive switching layer from diffusing into the inert electrode layer during a RRAM device programming process, eliminating erroneous programming phenomenon occurring during the erasing process, improving device reliability.
Abstract:
A nonvolatile resistive switching memory includes an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode. A graphene intercalation layer with nanopores, interposed between the easily oxidizable metal electrode and the resistive switching functional layer, is capable of controlling the metal ions, which are formed by the oxidation of the easily oxidizable metal electrode during the programming of the device, and only enter into the resistive switching functional layer through the position of the nanopores. Further, the graphene intercalation layer with nanopores is capable of blocking the diffusion of the metal ions, making the metal ions, which are formed after the oxidation of the easily oxidizable metal electrode, enter into the resistive switching functional layer only through the position of the nanopores during the programming of the device, thereby controlling the growing position of conductive filament.
Abstract:
The present disclosure provides a method for cleaning a lanthanum gallium silicate wafer which comprises the following steps: at a step of 1, a cleaning solution constituted of phosphorous acid, hydrogen peroxide and deionized water is utilized to clean the lanthanum gallium silicate wafer with a megahertz sound wave; at a step of 2, the cleaned lanthanum gallium silicate wafer is rinsed and dried by spinning; at a step of 3, a cleaning solution constituted of ammonia, hydrogen peroxide and deionized water is utilized to clean the lanthanum gallium silicate wafer with the megahertz sound wave; at a step of 4, the cleaned lanthanum gallium silicate wafer is rinsed and dried by spinning; and at a step of 5, the rinsed and dried wafer is placed in an oven to be baked. The present invention shortens a period of acidic cleaning process and prolongs a period of alkaline cleaning and utilizes a more effective cleaning with megahertz sound wave to replace the conventional ultrasonic cleaning to solve the issue of cleaning the lanthanum gallium silicate wafer after a cutting process and to improve surface cleanliness of the lanthanum gallium silicate wafer to get a better cleaning effect.
Abstract:
A method for collecting a signal with a frequency lower than a Nyquist frequency includes, by a data transmitting end, selecting a suitable transformation base matrix for an input signal, deriving a sparse representation of the signal using the transformation base matrix to determine a sparsity of the signal, calculating a number M of compressive sampling operations according to the sparsity, sampling the signal with fNYQ/M using M channels, and integrating sampling values of each channel to obtain M measurement values. A reconstruction end reconstructs an original signal by solving optimization problems. Based on theory, compressive sampling can be performed on a sparse signal or a signal represented in a sparse manner with a frequency much lower than the Nyquist frequency, overcoming restrictions of the typical Nyquist sampling theorem. The method can be implemented simply and decrease pressure on data collection, storage, transmission and processing.
Abstract:
A vertical channel-type 3D semiconductor memory device and a method for manufacturing the same are disclosed. In one aspect, the device includes a multi-layer film formed by depositing alternating layers of insulation and an electrode material on a substrate. The device also includes through-holes formed by etching the film to the substrate. The device also includes gate stacks formed by depositing barrier storage and a tunnel layers in sequence on inner walls of the through-holes. The device also includes hollow channels formed by depositing a channel material on the tunnel layer. The device also includes drains for bit-line connection in top portions of the hollow channels. The device also includes sources formed in contact regions between through-holes and the substrate in bottom portions of the hollow channels.
Abstract:
A vertical channel-type 3D semiconductor memory device and a method for manufacturing the same are disclosed. In one aspect, the device includes a multi-layer film formed by depositing alternating layers of insulation and an electrode material on a substrate. The device also includes through-holes formed by etching the film to the substrate. The device also includes gate stacks formed by depositing barrier storage and a tunnel layers in sequence on inner walls of the through-holes. The device also includes hollow channels formed by depositing a channel material on the tunnel layer. The device also includes drains for bit-line connection in top portions of the hollow channels. The device also includes sources formed in contact regions between through-holes and the substrate in bottom portions of the hollow channels.