-
公开(公告)号:US11080811B2
公开(公告)日:2021-08-03
申请号:US16446398
申请日:2019-06-19
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , Linda L. Hurd , Dukhwan Kim , Mike B. Macpherson , John C. Weast , Feng Chen , Farshad Akhbari , Narayan Srinivasa , Nadathur Rajagopalan Satish , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman
IPC: G06T1/20 , G06F3/14 , G06F9/30 , G06F9/38 , G06N3/04 , G06N3/063 , G06N3/08 , G06T15/00 , G09G5/36 , G06T15/04
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core to perform a mixed precision multi-dimensional matrix multiply and accumulate operation on 16-bit and/or 32 bit floating-point elements.
-
22.
公开(公告)号:US20210124579A1
公开(公告)日:2021-04-29
申请号:US17115989
申请日:2020-12-09
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
-
公开(公告)号:US10726514B2
公开(公告)日:2020-07-28
申请号:US15581167
申请日:2017-04-28
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
IPC: G06T1/20 , G06F7/483 , G06N3/08 , G06F9/30 , G06N3/04 , G06N3/063 , G06F9/50 , G06F9/38 , G06N20/00 , G06F3/14 , G06T1/60 , G06T15/00
Abstract: One embodiment provides a general-purpose graphics processing unit comprising a dynamic precision floating-point unit including a control unit having precision tracking hardware logic to track an available number of bits of precision for computed data relative to a target precision, wherein the dynamic precision floating-point unit includes computational logic to output data at multiple precisions.
-
公开(公告)号:US20200226096A1
公开(公告)日:2020-07-16
申请号:US16744407
申请日:2020-01-16
Applicant: Intel Corporation
Inventor: Altug Koker , Farshad Akhbari , Feng Chen , Dukhwan Kim , Narayan Srinivasa , Nadathur Rajagopalan Satish , Liwei Ma , Jeremy Bottleson , Eriko Nurvitadhi , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu
Abstract: An integrated circuit (IC) package apparatus is disclosed. The IC package includes one or more processing units and a bridge, mounted below the one or more processing unit, including one or more arithmetic logic units (ALUs) to perform atomic operations.
-
25.
公开(公告)号:US10474458B2
公开(公告)日:2019-11-12
申请号:US15787129
申请日:2017-10-18
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
IPC: G09G5/00 , G06F9/30 , G09G5/393 , G06F9/38 , G06F7/483 , G06F7/544 , G06N3/04 , G06N3/063 , G06N3/08 , G06T15/00 , G06N20/00
Abstract: One embodiment provides for a machine-learning hardware accelerator comprising a compute unit having an adder and a multiplier that are shared between integer data path and a floating-point datapath, the upper bits of input operands to the multiplier to be gated during floating-point operation.
-
公开(公告)号:US20190304054A1
公开(公告)日:2019-10-03
申请号:US16446398
申请日:2019-06-19
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , Linda L. Hurd , Dukhwan Kim , Mike B. Macpherson , John C. Weast , Feng Chen , Farshad Akhbari , Narayan Srinivasa , Nadathur Rajagopalan Satish , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman
IPC: G06T1/20 , G06N3/08 , G06N3/04 , G06T15/00 , G09G5/36 , G06F9/30 , G06F3/14 , G06N3/063 , G06F9/38
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core to perform a mixed precision multi-dimensional matrix multiply and accumulate operation on 16-bit and/or 32 bit floating-point elements.
-
公开(公告)号:US20190188554A1
公开(公告)日:2019-06-20
申请号:US16283021
申请日:2019-02-22
Applicant: Intel Corporation
Inventor: Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Barath Lakshmanan , Ben J. Ashbaugh , Jingyi Jin , Jeremy Bottleson , Mike B. Macpherson , Kevin Nealis , Dhawal Srivastava , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Altug Koker , Abhishek R. Appu
CPC classification number: G06N3/04 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/082 , G06T1/20
Abstract: Embodiments provide systems and methods which facilitate optimization of a convolutional neural network (CNN). One embodiment provides for a non-transitory machine-readable medium storing instructions that cause one or more processors to perform operations comprising processing a trained convolutional neural network (CNN) to generate a processed CNN, the trained CNN having weights in a floating-point format. Processing the trained CNN includes quantizing the weights in the floating-point format to generate weights in an integer format. Quantizing the weights includes generating a quantization table to enable non-uniform quantization of the weights and quantizing the weights from the floating-point format to the integer format using the quantization table. The operations additionally comprise performing an inference operation utilizing the processed CNN with the integer format weights.
-
公开(公告)号:US20180315159A1
公开(公告)日:2018-11-01
申请号:US15789565
申请日:2017-10-20
Applicant: Intel Corporation
Inventor: Elmoustapha Ould-Ahmed-Vall , Sara S. Baghsorkhi , Anbang Yao , Kevin Nealis , Xiaoming Chen , Altug Koker , Abhishek R. Appu , John C. Weast , Mike B. Macpherson , Dukhwan Kim , Linda L. Hurd , Ben J. Ashbaugh , Barath Lakshmanan , Liwei Ma , Joydeep Ray , Ping T. Tang , Michael S. Strickland
CPC classification number: G06T1/20 , G06F3/14 , G06F7/483 , G06F9/30014 , G06F9/30185 , G06F9/3863 , G06F9/5044 , G06N3/0445 , G06N3/0454 , G06N3/063 , G06N3/084 , G06T1/60 , G06T15/005
Abstract: One embodiment provides an accelerator module comprising a memory stack including multiple memory dies; a graphics processing unit (GPU) coupled with the memory stack via one or more memory controllers, the GPU including a plurality of multiprocessors having a single instruction, multiple thread (SIMT) architecture, the multiprocessors to execute at least one single instruction; the at least one single instruction to cause at least a portion of the GPU to perform a floating-point operation on input having differing precisions; and the floating-point operation is a two-dimensional matrix multiply and accumulate operation.
-
公开(公告)号:US12056788B2
公开(公告)日:2024-08-06
申请号:US17684187
申请日:2022-03-01
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , Linda L. Hurd , Dukhwan Kim , Mike B. Macpherson , John C. Weast , Feng Chen , Farshad Akhbari , Narayan Srinivasa , Nadathur Rajagopalan Satish , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman
IPC: G06T1/20 , G06F3/14 , G06F9/30 , G06F9/38 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06T15/00 , G09G5/36 , G06T15/04
CPC classification number: G06T1/20 , G06F3/14 , G06F9/3001 , G06F9/30014 , G06F9/3017 , G06F9/3887 , G06F9/3895 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06T15/005 , G09G5/363 , G06F9/3851 , G06T15/04 , G09G2360/06 , G09G2360/08 , G09G2360/121
Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a mixed precision core including mixed-precision execution circuitry to execute one or more of the mixed-precision instructions to perform a mixed-precision dot-product operation comprising to perform a set of multiply and accumulate operations.
-
公开(公告)号:US12050984B2
公开(公告)日:2024-07-30
申请号:US17083080
申请日:2020-10-28
Applicant: Intel Corporation
Inventor: Rajkishore Barik , Elmoustapha Ould-Ahmed-Vall , Xiaoming Chen , Dhawal Srivastava , Anbang Yao , Kevin Nealis , Eriko Nurvitadhi , Sara S. Baghsorkhi , Balaji Vembu , Tatiana Shpeisman , Ping T. Tang
IPC: G06N3/06 , G06F9/30 , G06F9/38 , G06F16/17 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/084 , G06T1/20
CPC classification number: G06N3/063 , G06F9/3001 , G06F9/3017 , G06F9/3851 , G06F9/3887 , G06F9/3895 , G06F16/17 , G06N3/044 , G06N3/045 , G06N3/084 , G06T1/20
Abstract: One embodiment provides for a general-purpose graphics processing unit including a scheduler to schedule multiple matrix operations for execution by a general-purpose graphics processing unit. The multiple matrix operations are determined based on a single machine learning compute instruction. The single machine learning compute instruction is a convolution instruction and the multiple matrix operations are associated with a convolution operation.
-
-
-
-
-
-
-
-
-