Abstract:
A coated cemented carbide tool (20, 70), and a method for making the same, wherein the as-sintered substrate (30, 79) is formed by sintering in an atmosphere having at least a partial pressure and for a part of the time a nitrogen partial pressure.
Abstract:
In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100°C less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
Abstract:
An article including a substrate 22 and a coating is provided. The article may be a cutting insert 20 shown to improve performance in chip-forming material removal operations or a wear-resistant component for chipless forming operations. One wear-resistant coating scheme 40 has an underlayer 42 and top layer 46 containing aluminum, chromium, and nitrogen. The coating scheme 40 also includes a mediate multi-periodicity nanolayer coating scheme 44 containing titanium, aluminum, chromium and nitrogen. The mediate multi-periodicity nanolayer 44 coating scheme includes a plurality of sets of alternating layer arrangements 50, 52, 54, 56, 58, 60, 62. Each one of the alternating layer arrangements 50, 52, 54, 56, 58, 60, 62 has a base layer 64 comprising titanium, aluminum and nitrogen and a nanolayer region having a plurality of sets of alternating nanolayers 68, 70, 72, 74, 76, 78. Each set of alternating nanolayers 68, 70, 72, 74, 76, 78 has one nanolayer 82 having aluminum, chromium, titanium and nitrogen and another nanolayer 84 having aluminum, chromium, titanium and nitrogen. The base layer thickness G is smaller than the nanolayer region thickness F.
Abstract:
A coated cemented carbide tool (20, 70), and a method for making the same, wherein the as-sintered substrate (30, 79) is formed by sintering in an atmosphere having at least a partial pressure and for a part of the time a nitrogen partial pressure.
Abstract:
A method of making a coated member (30) comprising the steps of: providing a sintered substrate that includes hard grains bonded together by metallic binder; removing material from the sintered substrate to form an as-ground substrate; reducing the residual stresses in the substrate; resintering the substrate to form a resintered substrate; and adherently depositing a coating on the resintered substrate.
Abstract:
A method of making a coated member (30) comprising the steps of: providing a sintered substrate that includes hard grains bonded together by metallic binder; removing material from the sintered substrate to form an as-ground substrate; reducing the residual stresses in the substrate; resintering the substrate to form a resintered substrate; and adherently depositing a coating on the resintered substrate.