Abstract:
Methods and systems for generating a defect sample for a wafer are provided. One method includes separating defects detected on a wafer into bins having diversity in values of a first set of one or more first attributes of the defects. The method also includes selecting, independently from one or more of the bins, defects within the bins based on diversity in a second set of one or more second attributes of the defects. The selected defects are then used to create a defect sample for the wafer. In this manner, defects having diverse values of multiple attributes can be easily selected.
Abstract:
Methods and systems for classifying defects detected on a wafer are provided. One method includes inputting information for defects detected on a wafer into each of at least two defect classifiers included in a composite defect classifier. Such a method also includes, for at least one of the defects that is assigned to two or more bins in the composite defect classifier, determining a bin for the at least one of the defects based on a rank assigned to the two or more bins. The rank is assigned to the two or more bins based on one or more characteristics determined for the two or more bins, and the one or more characteristics are determined based on a comparison of predetermined defect classifications for defects in a training set and defect classifications determined for the defects in the training set by the at least two defect classifiers.
Abstract:
Methods and systems for generating unbiased wafer defect samples are provided. One method includes selecting the defects detected by each of multiple scans performed on a wafer that have the most diversity in one or more defect attributes such that a diverse set of defects are selected across each scan. In addition, the method may include selecting the defects such that any defect that is selected and is common to two or more of the scans is not selected twice and any defects that are selected are diverse with respect to the common, selected defect. Furthermore, no sampling, binning, or classifying of the defects may be performed prior to selection of the defects such that the sampled defects are unbiased by any sampling, binning, or classifying method.
Abstract:
A system and method of matching multiple scanners using design and defect data are described. A golden wafer is processed using a golden tool. A second wafer is processed using a second tool. Both tools provide focus/exposure modulation. Wafer-level spatial signatures of critical structures for both wafers can be compared to evaluate the behavior of the scanners. Critical structures can be identified by binning defects on the golden wafer having similar patterns. In one embodiment, the signatures must match within a certain percentage or the second tool is characterized as a "no match". Reticles can be compared in a similar manner, wherein the golden and second wafers are processed using a golden reticle and a second reticle, respectively.
Abstract:
Systems and methods for monitoring time-varying classification performance are disclosed. A method may include, but is not limited to: receiving one or more signals indicative of one or more properties of one or more samples from one or more scanning inspection tools; determining populations of one or more defect types for the one or more samples according an application of one or more classification rules to the one or more signals received from the one or more scanning inspection tools; determining populations of the one or more defect types for the one or more samples using one or more high-resolution inspection tools; and computing one or more correlations between populations of one or more defect types for one or more samples determined from application of one or more classification rules applied to one or more signals received from the one or more scanning inspection tools and populations of the one or more defect types for the one or more samples determined using the one or more high-resolution inspection tools.