Abstract:
A system and method for incremental redundancy transmission in a communication system. A time slot is provided having at least one sub-slot with a fixed size, and a data block sized to fit in the sub-slot, a header having a one data block sequence number in the header for the time slot. A parity block is sized smaller than the data block such that the parity block and the data block sequence number fit within the sub-slot. The data block and parity block are trnasmitted in the sub-slot within the time slot. In the header for the time slot the number of data blocks and parity blocks transmitted are identified.
Abstract:
A system and method for providing wireless time division multiplexed communications in which time is divided into a plurality of frames and each frame is divided into N data bursts, which has a first multiplexer defining a channel as a series of bursts that occur periodically every N bursts once per frame; a second multiplexer defining a sub-channel as every Mth burst of said channel; and a transmitter transmitting said channel and sub-channel from a first station to a second station. A new interleaving 0246/1357 method is used by the system which is just as good as the known 0123/4567 method when ideal frequency hopping is used, and 0246/1357 has better performance when non-ideal frequency hopping or no frequency hopping is used.
Abstract:
A technique for controlling the power with which a wireless terminal transmits is disclosed. One embodiment of the present invention comprises: transmitting a first signal at a first power level; receiving a series of n power control signals, b i-n+1 through b i ; setting a step size based on a measure of dispersion of the n power control signals; and transmitting a second signal at a second power level that is based on the first power level and the step size.
Abstract:
Disclosed is a method of sub-packet adaptation based on data rate. Specifically, the size of a sub-packet is adapted to a data rate at which the sub-packet is to be transmitted. In one embodiment, the sub-packet is size adapted to the data rate in a format that would allow such size adapted sub-packet to be soft combined with another sub-packet of a same or different size. The size adapted sub-packet may be transmitted prior to or after the other sub-packet.
Abstract:
In a mobile station-mobile receiver arrangement a method and apparatus for a radio link control (RLC) protocol that allows partial recovery of data for streaming services. The maximum number of retransmissions allowed by the method for each RLC block is a function of the maximum delivery delay required by the streaming service and the round trip delay.
Abstract:
A variable length sequence number is used to identify data units in a communication channel. The sequence number associated with the most recent data that has been received successfully and the sequence number expected with the next new data message to be received are examined to determine the minimum size sequence number necessary to unambiguously identify to the transmitter incorrectly received data that must be retransmitted in a later message. The receiver provides the transmitter with the sequence number associated with the last successfully received byte of data and the sequence number associated with the next expected byte of data. The receiver communicates this information to the transmitter using a NAK control message. The transmitter then uses the sequence number of the next byte of data to be transmitted and the information received in the control message from the receiver to determine the smallest number of bits necessary to represent the sequence numbers for both data transmissions and the retransmission of data that was not received properly by the receiver.
Abstract:
A method for improving the throughput of a communication system by decreasing the amount of time it takes to retransmit information determined to have been erroneous. Information received by an equipment is decoded and subjected to error detection techniques. The equipment performs a data puncture operation on the received information it is currently transmitting to request a retransmission of such received information.
Abstract:
Bursts of additional bandwidth (e.g., one or more supplemental channels or a channel having variable bandwidth) is assigned to users (e.g., high-speed data users) in a cellular telecommunication system. A request for assignment of additional bandwidth may be an initial request, a continuation request for an on-going burst, or a retry requests after a previously rejected request. In any case, it is determined whether to grant or reject the request. If the request is rejected, instructions are given to submit a retry request after a specified back-off time. The present invention may be implemented using either an asynchronous approach or a synchronous approach. According to the asynchronous approach, all requests are handled asynchronously. According to the synchronous approach, initial requests are handled asynchronously, but continuation requests and retry requests are handled synchronously at epoch times that coincide with specific time slots.
Abstract:
A technique for controlling the power with which a wireless terminal transmits is disclosed. One embodiment of the present invention comprises: transmitting a first signal at a first power level; receiving a series of n power control signals, b i-n+1 through b i ; setting a step size based on a measure of dispersion of the n power control signals; and transmitting a second signal at a second power level that is based on the first power level and the step size.