Abstract:
A semiconductor manufacturing process facility requiring use therein of air exhaust for its operation, such facility including clean room and gray room components, with the clean room having at least one semiconductor manufacturing tool therein, and wherein air exhaust is flowed through a region of the clean room. The facility includes an air exhaust treatment apparatus arranged to (i) receive air exhaust after flow thereof through said region of said clean room, (ii) produce a treated air exhaust, and (iii) recirculate the treated air exhaust to an ambient air environment in the facility, e.g., to the gray room of the facility.
Abstract:
Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Abstract:
A fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIIIB metal therein. In one embodiment, the porous metal matrix forms a solid-phase metal adsorbent medium, with an average pore diameter of from about 0.5 nm to about 2 nm and a porosity of from about 10% to about 30%, which is particularly useful for sorptively storing and desorptively dispensing a low vapor pressure fluid, e.g., ClF3, HF, GeF4, Br2, etc. In another aspect, the porous metal matrix forms a solid-phase metal sorbent with an average pore diameter of from about 0.25 μm to about 500 μm and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas.
Abstract:
Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Abstract:
A capacity increase and/or pressure decrease of gas in a gas storage and dispensing vessel is achieved by use of a physical adsorbent having sorptive affinity for the gas. Such approach enables conventional high pressure gas cylinders to be redeployed with contained sorbent, to achieve substantial enhancement of safety and capacity.
Abstract:
A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
Abstract:
A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g, including a flow control means such as a valve, is arranged in gas/vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas/vapor from the vessel. The fluid in the vessel may be constituted by a liquid which is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. A phase separator such as a gas/vapor-permeable liquid-impermeable membrane, may be associated with the regulator, as a barrier to flow of liquid into the regulator, when the contained fluid in the vessel is in a liquid state.
Abstract:
A fluid storage and dispensing system comprising a vessel for holding a fluid at a desired pressure. The vessel has a pressure regulator, e.g., a single-stage or multi-stage regulator, associated with a port of the vessel, and set at a predetermined pressure. A dispensing assembly, e.g., including a flow control means such as a valve, is arranged in gas/vapor flow communication with the regulator, whereby the opening of the valve effects dispensing of gas/vapor from the vessel. The fluid in the vessel may be constituted by a liquid that is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g., ambient (room) temperature. In another aspect, the vessel contains a solid-phase sorbent material having sorbable gas adsorbed thereon, at a pressure in excess of 50 psig. The vessel may have a >1 inch NGT threaded neck opening, to accommodate the installation of an interior regulator.
Abstract:
A method and apparatus for manufacture of carbon nanotubes, in which a substrate is contacted with a hydrocarbonaceous feedstock containing a catalytically effective metal to deposit the feedstock on the substrate, followed by oxidation of the deposited feedstock to remove hydrocarbonaceous and carbonaceous components from the substrate, while retaining the catalytically effective metal thereon, and contacting of the substrate having retained catalytically effective metal thereon with a carbon source material to grow carbon nanotubes on the substrate. The manufacture can be carried out with a petroleum feedstock such as an oil refining atmospheric tower residue, to produce carbon nanotubes in high volume at low cost. Also disclosed is a composite including porous material having single-walled carbon nanotubes in pores thereof.
Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.