Abstract:
The invention concerns a miniature confocal optical head (4) for a confocal imaging system, in particular endoscopic, said head comprising a point source (2a) for producing a light beam (13); a ball lens (12) arranged at the tip of the optical head, partly outside, to cause said light beam to converge in an excitation point (19) located in a subsurface field under observation (14) of a sample (15), the digital aperture of said lens and the dimension of the point source being adapted to ensure confocality of the assembly; and scanning means (10, 211, 22) for rotating the point source so that the excitation point (19) scans said field under observation. The inventive system produces a real-time confocal image (about 10 images/sec.) of very high quality and homogeneous in the entire field (the optical aberrations are constant in the entire field due to the spherical symmetry of the ball lens), and this is achieved through a miniature head.
Abstract:
The invention relates to a system for carrying out fibered multiphoton microscopic imagery of a sample (10) for use in endoscopy or fluorescence microscopy. This system comprises: a femtosecond pulsed laser (1, 2) for generating a multiphoton excitation laser radiation; an image guide (8) comprised of a number of optical fibers and permitting the sample to be illuminated by a point-by-point scanning in a subsurface plane; pre-compensating means (4) for pre-compensating for dispersion effects of the excitation pulses in the image guide (8), these means being situated between the pulsed laser and the image guide (8); scanning means for directing, in succession, the excitation laser beam in a fiber of the image guide, and; in particular, an optical head (9) for focussing the excitation laser beam exiting the image guide in the sample (10).
Abstract:
The invention concerns an optical head comprising: a point source (2b) producing an excitation beam, optical means (12, 13) adapted in particular to converge said optical beam into an excitation point S located in a subsurface plane P relative to the surface of a sample, said plane being perpendicular to the optical axis of the optical head; and means for scanning said excitation point so as to define an observation field in said subsurface plane along two perpendicular scanning directions, a rapid online scanning and a slow columnar scanning. The invention is characterized in that it comprises micro-electrical mechanical systems (MEMS) (14a, b) designed to move in translation along a selected displacement (Dc) at least one of the optical means (12, 13), which is mobile along a direction perpendicular to said optical axis so as to obtain at least one of the scanning directions. The invention provides the advantages of maintaining an axial illumination of the sample and of using a miniature head.
Abstract:
The invention concerns a parallel confocal laser microscopy system (2) comprising a VCSEL vertical cavity laser array (23) for emitting light beams, optical means (24) for focusing the light beams onto an object (25) to be observed. The invention is characterized in that a photodetector (22) is arranged behind each VCSEL laser such that the photodetector is capable of receiving a light beam backscattered from said object (25) via the VCSEL laser cavity, said cavity having an opening acting as filtering hole.
Abstract:
The invention concerns an equipment comprising an image guide (1) consisting of flexible optical fibers with: on the proximal end side: a source (2), angular scanning means (3), injection means (4) in one of the fibers, means for splitting (5) the illuminating beam and the backscattered signal, means for spatial filtering (6), means for detecting (7) said signal, electronic means (8) for controlling, analyzing and digital processing of the detected signal and display; and on the distal end side: an optical head (9) for focusing the illuminating beam exiting from the illuminated fiber. The invention is characterized in that the means (3) comprise a resonant line mirror (M1) and a galvanometric field mirror (M2) with a variable frequency and two afocal optical systems adapted to conjugate the two mirrors (M1, M2) firstly in the field mirror (M2) and the injection means (4) in the image guide in a second step.
Abstract:
The invention concerns an optical head for equipping the distal end of a flexible optical fiber bundle (2), designed to be urged into contact with an analyzing surface and comprising optical means (3) for focusing an excitation signal into a so-called excitation focal point located at a specific depth beneath the analyzing surface and for sampling a signal backscattered by the excitation focal point which is carried back by said fiber bundle. The invention is characterized in that it comprises an optics-holder tube (4) wherein are inserted on one side the distal end portion (1) of the fiber bundle (2) and on the other optical means, the latter including a plate (21) placed in contact with the end (14) of the fiber bundle whereof the index is close to that of the fiber core and a focusing optical block (3), an output window (30) being further provided adapted to provide index adaptation so as to eliminate parasitic reflection occurring on the analyzing surface.