Abstract:
There is provided an image acquisition device including a light source configured to emit laser light and to be capable of controlling a wavelength of the laser light, a measurement unit configured to scan a sample using the laser light and to measure an intensity of measurement target light from the sample by receiving the laser light, and a control unit configured to generate an image of the sample based on intensity distribution of the measured measurement target light. The control unit controls a wavelength of the laser light based on the intensity distribution of the measured measurement target light.
Abstract:
A system for carrying out fibered multiphoton microscopic imagery of a sample (10) for use in endoscopy or fluorescence microscopy includes: a femtosecond pulsed laser (1, 2) for generating a multiphoton excitation laser radiation; an image guide (8) having a number of optical fibers and permitting the sample to be illuminated by a point-by-point scanning in a subsurface plane; pre-compensating elements (4) for pre-compensating for dispersion effects of the excitation pulses in the image guide (8), these elements being situated between the pulsed laser and the image guide (8); scanning elements for directing, in succession, the excitation laser beam in a fiber of the image guide, and; in particular, an optical head (9) for focussing the excitation laser beam exiting the image guide in the sample (10).
Abstract:
A part scanning and part calibration method for the inspection of printed circuit boards and integrated circuits includes a camera and two rotating mirrors to scan an image of a pattern mask retical upon which a precise pattern has been deposited. Small parts are placed upon the retical to be inspected. The third overhead mirror is provided to view the part under inspection from another perspective. The scene of the part is triangulated and the dimensions of the system can thus be calibrated. A precise retical mask is provided with dot patterns which provide an additional set of information needed for calibration. By scanning more than one dot pattern the missing state values can be resolved using an iterative trigonomic solution.
Abstract:
Innerhalb eines portablen Meßkopfes (A) befindet sich die Laserlichtquelle (FL), vorzugsweise ein direkt modulierter, diodengepumpter Neodym/YAG-Laser. Dessen Laserstrahl (f₁) wird lichtleiterfrei über eine Scanner-Anordnung (5) und eine Doppeloptik (6) auf die Scan-Zone der zu untersuchenden Materialprobe (B) gerichtet. Die Anstrahl-Meßbahn ist z.B. mäanderförmig mit Strahlablenkung in x- und y-Richtung. Die Doppeloptik (6) läßt die von der Probe (B) emittierten IR-Lichtsignale (- Δ f₃) durch. Diese werden über die Scanner-Anordnung (5) und einen Koppelspiegel (4b) in Form eines dichroitischen Spiegels, welcher die Laserstrahlen (f₁) in der einen Richtung reflektiert und in der anderen Richtung in Bezug auf die IR-Lichtsignale (- Δ f₃) wie ein durchlässiges Fenster wirkt, über eine IR-Optik (7) auf einen IR-Detektor (8) fokussiert und von diesem in entsprechende elektrische Signale umgeformt. Der Meßkopf (A) ist über ein flexibles elektrisches Verbindungskabel mit einer elektronischen Bilderzeugungseinheit verbunden, von welcher die elektrischen Signale zur Steuerung des Lasers (FL) und zur Strahlführung kommen. Gegenstand der Erfindung sind auch eine Reihe vorteilhafter Verwendungen des Verfahrens sowie eine Einrichtung zu dessen Durchführung.
Abstract:
La présente invention est relative à un appareil de détection et de numération de particules fluorescentes ou rendues fluorescentes, portées par un support solide et à un procédé de détection desdites particules, à l'aide dudit appareil. L'appareil de détection et de numération de particules, présentes normalement, ou éventuellement contenues en tant que contaminants, dans un fluide liquide ou gazeux, ou dans un produit notamment alimentaire ou d'hygiène, par fluorimétrie, comprend une source lumineuse (10), des moyens de focalisation (12) du faisceau issu de ladite source lumineuse et au moins un moyen de détection (40) de la lumière fluorescente émise par les particules (60) présentes, et comprend en outre : - un support (50) approprié à la collecte des particules naturellement fluorescentes ou rendues fluorescentes à l'aide d'au moins un colorant approprié choisi dans le groupe qui comprend les colorants vitaux, les colorants de viabilité positive et des substances fluorescentes portées par des anticorps et/ou des sondes nucléiques, - des moyens de balayage (21, 31, 35) de la totalité de la surface du support à analyser, par ledit faisceau lumineux, - et, un microprocesseur (45) de traitement pourvu d'au moins un moyen d'enregistrement et de comptage simultané des signaux électriques transmis par le/les dispositifs de détection (40) et le système de balayage (21, 31, 35).
Abstract:
Systems and methods for analyzing samples, such as tissue samples, and measuring the emissions when these samples are exposed to light are disclosed. Embodiments include illuminating multiple target locations on a sample with laser light, which may first be manipulated by a scanner, and receiving decaying emissions from the target location. At least some embodiments include the emissions traveling backwards along a substantial portion of the laser light pathway and being received by a detector. Additional embodiments include converting the received emissions into streak lines of position versus time, converting the streak lines to plots of signal strength versus time, and curve fitting the plots to determine representative decay times. In some embodiments, the decay times are presented as plots of position on the surface of the sample versus emission strength, which may be color coded. Some embodiment dwell on each target location for multiple scans of the laser.