Abstract:
A file format for a serverless distributed file system is composed of two parts: a primary data stream and a metadata stream. The data stream contains a file that is divided into multiple blocks. Each block is encrypted using a hash of the block as the encryption key. The metadata stream contains a header, a structure for indexing the encrypted blocks in the primary data stream, and some user information. The indexing structure defines leaf nodes for each of the blocks. Each leaf node consists of an access value used for decryption of the associated block and a verification value used to verify the encrypted block independently of other blocks. In one implementation, the access value is formed by hashing the file block and encrypting the resultant hash value using a randomly generated key. The key is then encrypted using the user's key as the encryption key. The verification value is formed by hashing the associated encrypted block using a one-way hash function. The file format supports verification of individual file blocks without knowledge of the randomly generated key or any user keys. To verify a block of the file, the file system traverses the tree to the appropriate leaf node associated with a target block to be verified. The file system hashes the target block and if the hash matches the access value contained in the leaf node, the block is authentic.
Abstract:
A serverless distributed file system manages the storage of files and directories using one or more directory groups. The directories may be managed using Byzantine-fault-tolerant groups, whereas files are managed without using Byzantine-fault-tolerant groups. Additionally, the file system may employ a hierarchical namespace to store files. Furthermore, the directory group may employ a plurality of locks to control access to objects (e.g., files and directories) in each directory.
Abstract:
A serverless distributed file system manages the storage of files and directories using one or more directory groups. The directories may be managed using Byzantine-fault-tolerant groups, whereas files are managed without using Byzantine-fault-tolerant groups. Additionally, the file system may employ a hierarchical namespace to store files. Furthermore, the directory group may employ a plurality of locks to control access to objects (e.g., files and directories) in each directory.
Abstract:
A serverless distributed file system manages the storage of files and directories using one or more directory groups. The directories may be managed using Byzantine-fault-tolerant groups, whereas files are managed without using Byzantine-fault-tolerant groups. Additionally, the file system may employ a hierarchical namespace to store files. Furthermore, the directory group may employ a plurality of locks to control access to objects (e.g., files and directories) in each directory.
Abstract:
A serverless distributed file system manages the storage of files and directories using one or more directory groups. The directories may be managed using Byzantine-fault-tolerant groups, whereas files are managed without using Byzantine-fault-tolerant groups. Additionally, the file system may employ a hierarchical namespace to store files. Furthermore, the directory group may employ a plurality of locks to control access to objects (e.g., files and directories) in each directory.
Abstract:
A system and method for using skip nets to build and maintain overlay networks for peer-to-peer systems. A skip net is a distributed data structure that can be used to avoid some of the disadvantages of distributed hash tables by organizing data by key ordering. Skip nets can use logarithmic state per node and probabilistically support searches, insertions and deletions in logarithmic time.
Abstract:
A system and method for using skip nets to build and maintain overlay networks for peer-to-peer systems. A skip net is a distributed data structure that can be used to avoid some of the disadvantages of distributed hash tables by organizing data by key ordering. Skip nets can use logarithmic state per node and probabilistically support searches, insertions and deletions in logarithmic time.
Abstract:
A file format for a serverless distributed file system is composed of two parts: a primary data stream and a metadata stream. The data stream contains a file that is divided into multiple blocks. Each block is encrypted using a hash of the block as the encryption key. The metadata stream contains a header, a structure for indexing the encrypted blocks in the primary data stream, and some user information. The indexing structure defines leaf nodes for each of the blocks. Each leaf node consists of an access value used for decryption of the associated block and a verification value used to verify the encrypted block independently of other blocks. In one implementation, the access value is formed by hashing the file block and encrypting the resultant hash value using a randomly generated key. The key is then encrypted using the user's key as the encryption key. The verification value is formed by hashing the associated encrypted block using a one-way hash function. The file format supports verification of individual file blocks without knowledge of the randomly generated key or any user keys. To verify a block of the file, the file system traverses the tree to the appropriate leaf node associated with a target block to be verified. The file system hashes the target block and if the hash matches the access value contained in the leaf node, the block is authentic.