Abstract:
Systems and methods are described for using client conduits to enable bootstrapping and fault diagnosis of disconnected wireless clients. Client conduits are used to enable disconnected clients to diagnose their problems with the help of nearby clients. This technique may take advantage of the beaconing and probing mechanisms of IEEE 802.11 to ensure that connected clients do not pay unnecessary overheads for detecting disconnected clients. Methods are also described for detecting rogue devices disguising as disconnected clients.
Abstract:
Methods are described for using collaboration of neighboring wireless devices to enable location of disconnected wireless devices and rogue wireless access points. A central server computes the locations of the neighboring clients and uses those locations to estimate the location of a disconnected client. These techniques may take advantage of the beaconing and probing mechanisms of IEEE 802.11 to ensure that connected clients do not pay unnecessary overheads for detecting disconnected clients. Methods are also described for detecting and locating rogue devices by collaboratively collecting information from neighboring devices and comparing the information to a database.
Abstract:
Systems and methods for secure file writes after a catastrophic event are allowed over an unauthenticated channel in a serverless distributed file system if an authenticator accompanies the secure file writes. The authenticator can be a power-of-attorney certificate with time limitations, a vector of message authenticated code, or a single message authenticator with secured with a secret shared among members of the serverless distributed file system. The serverless distributed file system includes at least 3 f + 1 participating computer members, with f representing a number of faults tolerable by the system. The group requires at least one authenticator for file creation and file uploads. Any changes to files stored among the members can be made over an unauthenticated channel if the file changes are secured by the authenticator and the group is able to verify the authenticator.
Abstract:
A serverless distributed file system manages the storage of files and directories using one or more directory groups. The directories may be managed using Byzantine-fault-tolerant groups, whereas files are managed without using Byzantine-fault-tolerant groups. Additionally, the file system may employ a hierarchical namespace to store files. Furthermore, the directory group may employ a plurality of locks to control access to objects (e.g., files and directories) in each directory.
Abstract:
Disclosed is a Neighbor Location Discovery Protocol (NLDP) that determines the relative locations of the nodes in a mesh network. In one embodiment, NLDP can be implemented for an ad-hoc wireless network where the nodes are equipped with directional antennas and are not able to use GPS. While NLDP relies on nodes having at least two RF transceivers, it offers significant advantages over previously proposed protocols that employ only one RF transceiver. In NLDP antenna hardware is simple, easy to implement, and readily available. Further, NLDP exploits the host node's ability to operate simultaneously over non-overlapping channels to quickly converge on the neighbor's location. NLDP is limited by the range of the control channel, which operates in a omni-directional fashion. However, by choosing a low frequency band, high power, and low data rate, the range of the control channel can be increased to match the range on the data channel.
Abstract:
A method and system for optimizing channel access scheduling for multiple wireless computing devices over a wireless network improves channel access efficiency with respect to a primary channel. An access point, or host computer, includes a host transceiver for receiving control information from the wireless computing devices over a low power channel. Upon receiving the control information, the access point applies a scheduling algorithm to schedule channel access for the wireless computing devices to transmit data over the primary communication channel. The wireless computing devices include a low power radio for receiving scheduling information via the low power channel during idle periods. When the scheduling information is received, the wireless computing device activates its primary channel network interface components to communicate data through the primary channel. When the computing device is idle, the device is configured to power down all of its components with the exception of the circuitry required to power the low power channel. As such, the low power channel is maintained in an active state for receiving scheduling information, such as an access schedule, during both idle and non-idle periods.
Abstract:
Systems and methods for secure file writes after a catastrophic event are allowed over an unauthenticated channel in a serverless distributed file system if an authenticator accompanies the secure file writes. The authenticator can be a power-of-attorney certificate with time limitations, a vector of message authenticated code, or a single message authenticator with secured with a secret shared among members of the serverless distributed file system. The serverless distributed file system includes at least 3 f + 1 participating computer members, with f representing a number of faults tolerable by the system. The group requires at least one authenticator for file creation and file uploads. Any changes to files stored among the members can be made over an unauthenticated channel if the file changes are secured by the authenticator and the group is able to verify the authenticator.