A METHOD OF FORMING A DEVICE
    21.
    发明申请
    A METHOD OF FORMING A DEVICE 审中-公开
    一种形成装置的方法

    公开(公告)号:WO2015076659A1

    公开(公告)日:2015-05-28

    申请号:PCT/MY2014/000114

    申请日:2014-05-26

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method of forming a device, more particularly the present invention relates to a method of forming a graphene device by effectively transferring a graphene layer comprising the steps of providing at least a first material (11) layer, depositing at least a second material (12) layer on said at least a first material (11) layer, and depositing at least a catalyst layer (21) on said at least a second material (12) layer for forming nanostructures (22), etching said at least a first material (11) layer, and transferring remaining layers of said at least a second material (12) layer with nanostructures (22) onto at least a substrate (13).

    Abstract translation: 本发明涉及一种形成装置的方法,更具体地说,本发明涉及一种通过有效地转移石墨烯层来形成石墨烯装置的方法,包括以下步骤:提供至少第一材料层(11),至少沉积 在所述至少第一材料(11)层上的第二材料层(12),以及在所述至少第二材料层(12)上至少沉积催化剂层(21)以形成纳米结构(22), 至少第一材料层(11),并将所述至少第二材料层(12)的剩余层与纳米结构(22)转移到至少一个基板(13)上。

    APPARATUS FOR SORTING PARTICLES BY DIELECTROPHORESIS
    22.
    发明申请
    APPARATUS FOR SORTING PARTICLES BY DIELECTROPHORESIS 审中-公开
    用于通过电化学分离颗粒的装置

    公开(公告)号:WO2013028058A1

    公开(公告)日:2013-02-28

    申请号:PCT/MY2012/000168

    申请日:2012-06-29

    CPC classification number: B03C5/026 B03C2201/26

    Abstract: The present invention relates to an apparatus for sorting particles by dielectrophoresis. The apparatus comprises of a primary microchannel (110), at least one side microchannel (120), and at least three electrically coupled electrodes (131, 132, 133). The electrodes (131, 132, 133) are arranged in the primary microchannel (110) and are positioned near the proximal end of the side microchannel (120). A first electrode (131) is a planar electrode forming a part of the bottom inner surface of the primary microchannel (110). A second electrode (132) is a planar electrode forming a part of the top inner surface of the primary microchannel (110). A third electrode (133) is a comb-like electrode suspended in the middle of the primary microchannel (110) and planarly inclined towards the side microchannel (120).

    Abstract translation: 本发明涉及一种通过介电电泳分选颗粒的装置。 该装置包括初级微通道(110),至少一个侧面微通道(120)和至少三个电耦合电极(131,132,133)。 电极(131,132,133)布置在初级微通道(110)中并且位于侧面微通道(120)的近端附近。 第一电极(131)是形成初级微通道(110)的底部内表面的一部分的平面电极。 第二电极(132)是形成初级微通道(110)的顶部内表面的一部分的平面电极。 第三电极(133)是悬挂在初级微通道(110)的中间并朝向侧面微通道(120)平面倾斜的梳状电极。

    FABRICATION METHOD OF A MICROMECHANICAL DEVICE
    24.
    发明申请
    FABRICATION METHOD OF A MICROMECHANICAL DEVICE 审中-公开
    微生物装置的制造方法

    公开(公告)号:WO2009061168A1

    公开(公告)日:2009-05-14

    申请号:PCT/MY2008/000128

    申请日:2008-11-06

    CPC classification number: F04B43/043 B81C1/00158

    Abstract: A method for fabricating a micromechanical device comprises the steps of providing a substrate having a first dielectric layer on top surface of said substrate, a bottom conductive layer on top surface of said first dielectric layer, a second dielectric layer on said bottom conductive layer, a sacrificial layer on said second dielectric layer, a third dielectric layer on said sacrificial layer, and a top conductive layer on said third dielectric layer, etching a plurality of holes at said top conductive layer, then at said third dielectric layer and said sacrificial layer, and sealing said etched holes of said top conductive layer and third dielectric layer by depositing a fourth dielectric layer on top of said top conductive layer.

    Abstract translation: 一种用于制造微机械装置的方法包括以下步骤:提供在所述基底的顶表面上具有第一介电层的基底,在所述第一介电层的顶表面上的底部导电层,所述底部导电层上的第二介电层, 所述第二电介质层上的牺牲层,所述牺牲层上的第三电介质层和所述第三介电层上的顶部导电层,在所述第三介电层和所述牺牲层处蚀刻所述顶部导电层上的多个孔, 以及通过在所述顶部导电层的顶部上沉积第四电介质层来密封所述顶部导电层和第三电介质层的所述蚀刻孔。

    METHOD OF PREPARING SILVER NANOPARTICLES FOR USE AS INK

    公开(公告)号:WO2021246858A1

    公开(公告)日:2021-12-09

    申请号:PCT/MY2020/050181

    申请日:2020-11-30

    Applicant: MIMOS BERHAD

    Abstract: The present invention discloses a method of preparing silver nanoparticles colloidal solution to be used as conductive ink. The solution is prepared by mixing silver, water, surface coating agent and silver reducing agent into a silver colloidal mixture. The silver mixture is sonicated with ultrasonic waves using low temperature heating. Polar solvent is added to the mixture. The silver mixture is centrifuged which forms precipitate. The precipitate is grinded to obtain coated silver nanoparticles. The silver nanoparticles is processed into ink and inserted in an inkjet cartridge. The inkjet cartridge can be operated with a printer below 50°C. The overall process involves minimal heat. The surface coating agent is selected from the group consisting of carboxyl, carbonyl, carboxylate and acrylic-based polymer. A single layer of printed conductive pattern can be obtained by using the prepared ink.

    METAL ELECTRODE WITH HIGH ASPECT RATIO STRUCTURES AND METHOD OF FABRICATING THE SAME
    27.
    发明申请
    METAL ELECTRODE WITH HIGH ASPECT RATIO STRUCTURES AND METHOD OF FABRICATING THE SAME 审中-公开
    具有高比例比结构的金属电极及其制造方法

    公开(公告)号:WO2014209098A1

    公开(公告)日:2014-12-31

    申请号:PCT/MY2014/000088

    申请日:2014-04-30

    Applicant: MIMOS BERHAD

    CPC classification number: G01N27/226

    Abstract: Described herein is a metal electrode (100) having at least one high aspect ratio structure. The metal electrode (100) comprises a silicon layer (101) having the high aspect ratio structure, an oxide layer (102) on top of the silicon layer (101), an adhesive layer (103) on top of the oxide layer (102), and a metal layer (104) on top of the adhesive layer (103). The thickness of the metal layer (104) is at least 15 times lesser than the height of the high aspect ratio structure. Due to this particular feature, the metal layer (104) is deposited on top of the adhesive layer (103) in a self-aligned manner, taking the shape of the high aspect ratio structure, and disconnected at the wall of the high aspect ratio structure. Further, the metal electrode (100) can be modified accordingly to suit different applications. Also described herein is a method for fabricating the aforementioned metal electrode (100).

    Abstract translation: 这里描述的是具有至少一个高纵横比结构的金属电极(100)。 金属电极(100)包括具有高纵横比结构的硅层(101),在硅层(101)的顶部上的氧化物层(102),在氧化物层(102)的顶部上的粘合剂层 )和在粘合剂层(103)的顶部上的金属层(104)。 金属层(104)的厚度比高纵横比结构的高度小至少15倍。 由于这个特殊特征,金属层(104)以自对准的方式沉积在粘合剂层(103)的顶部上,采用高纵横比结构的形状,并且在高纵横比的壁处断开 结构体。 此外,可以相应地修改金属电极(100)以适应不同的应用。 这里也描述了制造上述金属电极(100)的方法。

    INTEGRATED MICROFLUIDICS SENSOR
    29.
    发明申请
    INTEGRATED MICROFLUIDICS SENSOR 审中-公开
    集成微流感传感器

    公开(公告)号:WO2012091540A1

    公开(公告)日:2012-07-05

    申请号:PCT/MY2011/000152

    申请日:2011-06-24

    CPC classification number: G01N27/4145

    Abstract: A FET-based sensor with integrated microfluidics components on opposite surfaces of the substrate for biological or chemical analysis with fluid manipulation capabilities. The FET-based sensors and microfluidic elements are embedded in a single chip and on a single substrate. The contact pads for the sensor are at the opposing side of the microfluidic components and sensing element. This will ensure that only components which need to be in contact with the fluid region will be exposed to the fluid boundary while the electrical and electronics components will inherently be protected from the fluid region. This eliminates the need for very reliable and leakage-free packaging material and technology traditionally required for segregation of the electrical components to the sensing and microfluidic regions.

    Abstract translation: 基于FET的传感器,其具有集成的微流体组件,用于在衬底的相对表面上,用于具有流体操纵能力的生物或化学分析。 基于FET的传感器和微流体元件嵌入在单个芯片和单个基板上。 传感器的接触垫位于微流体部件和感测元件的相对侧。 这将确保仅需要与流体区域接触的部件将暴露于流体边界,同时电气和电子部件将固有地保护免受流体区域的影响。 这消除了对于将电气部件分离到感测和微流体区域传统上所需的非常可靠和无泄漏的包装材料和技术的需要。

Patent Agency Ranking