A METHOD OF FORMING GRAPHENE NANOMESH
    1.
    发明申请

    公开(公告)号:WO2021133159A1

    公开(公告)日:2021-07-01

    申请号:PCT/MY2020/050133

    申请日:2020-11-05

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method (100) of forming graphene nanomesh comprising the steps of providing an oxide layer on top of the substrate (101) as an insulating layer, depositing a metal seed layer on a substrate (102) via physical vapor deposition technique; and growing a graphene layer on the metal seed layer (103) via chemical vapor deposition, whereby said graphene layer grows into the graphene nanomesh on the metal seed layer. The method (100) further comprising a step of transferring the graphene nanomesh to another substrate (104).

    APPARATUS AND METHOD FOR ELECTRICALLY TESTING A GAS SENSING ELEMENT
    2.
    发明申请
    APPARATUS AND METHOD FOR ELECTRICALLY TESTING A GAS SENSING ELEMENT 审中-公开
    用于电气测试气体传感元件的装置和方法

    公开(公告)号:WO2013048232A1

    公开(公告)日:2013-04-04

    申请号:PCT/MY2012/000194

    申请日:2012-06-29

    CPC classification number: G01N27/20 H01L22/14 H01L2924/0002 H01L2924/00

    Abstract: Apparatus for characterizing a sensing element which comprises of at least one gas chamber (301), at least one gas connection means, at least two electrical connection means (306), at least one heater (309), at least one sealing means (310) and at least one locking means. The characterization process of said sensing element can be carried out at wafer level through resistance measurement, whereby said sensing element can be a blanket sensing element before proceed to fabricating of full sensor device. The connection means comprises at least one spring in connection with an electrode for improved contacting of the workpiece.

    Abstract translation: 用于表征感测元件的装置,其包括至少一个气室(301),至少一个气体连接装置,至少两个电连接装置(306),至少一个加热器(309),至少一个密封装置 )和至少一个锁定装置。 所述感测元件的表征过程可以通过电阻测量在晶片级进行,由此在继续制造完整的传感器装置之前,所述感测元件可以是橡皮圈感测元件。 连接装置包括至少一个与电极连接的弹簧,用于改善工件的接触。

    AN INTEGRATED PACKAGED ENVIRONMENTAL SENSOR AND ROIC AND A METHOD OF FABRICATING THE SAME
    3.
    发明申请
    AN INTEGRATED PACKAGED ENVIRONMENTAL SENSOR AND ROIC AND A METHOD OF FABRICATING THE SAME 审中-公开
    一体化包装环境传感器和ROIC及其制造方法

    公开(公告)号:WO2011053110A2

    公开(公告)日:2011-05-05

    申请号:PCT/MY2010/000182

    申请日:2010-09-30

    CPC classification number: G01D11/245 G06K19/0717

    Abstract: An integrated packaged microchip (100) including at least one environmental sensor (104) and at least one Read-Out Integrated Chip (ROIC) (102) is provided, characterized in that, the integrated packaged microchip (100) further includes an etched opening (108) of the environmental sensor (104) exposed to a sensable environment, using at least one layer of glass wafer (101,106) and at least one layer of silicon wafer (107).

    Abstract translation: 提供包括至少一个环境传感器(104)和至少一个读出集成芯片(ROIC)(102)的集成封装微芯片(100),其特征在于,所述集成封装微芯片(100)还包括蚀刻开口 使用至少一层玻璃晶片(101,106)和至少一层硅晶片(107)来暴露于可感知环境的环境传感器(104)(108)。

    METHOD OF FORMING GRAPHENE BUMP STRUCTURE
    4.
    发明申请

    公开(公告)号:WO2020139077A1

    公开(公告)日:2020-07-02

    申请号:PCT/MY2019/050132

    申请日:2019-12-26

    Applicant: MIMOS BERHAD

    Abstract: The present invention relates to a method (200) of forming graphene bump structure (100) comprising the steps of providing (210) a substrate (10); etching (220) the substrate (10) to form a cavity structure (20); growing (230) a silicon dioxide layer (30) on top of the substrate (10); depositing (240) a thin metal catalyst layer (40) on top of the substrate (30); synthesizing (250) graphene layer (50) on top of the metal catalyst layer (40); depositing (260) an epoxy-based photoresist (60); removing (270) the thin metal catalyst layer (40), the silicon dioxide layer (30) and the epoxy-based photoresist (60) from the substrate (10); and patterning (280) the epoxy-based photoresist (60) to remove from the cavity structure (20) to form the graphene bump structure (100).

    A MICROFLUIDIC DEVICE
    5.
    发明申请
    A MICROFLUIDIC DEVICE 审中-公开
    微流体装置

    公开(公告)号:WO2014003535A1

    公开(公告)日:2014-01-03

    申请号:PCT/MY2013/000107

    申请日:2013-06-14

    Applicant: MIMOS BERHAD

    Abstract: An improve microfluidic device (10) is configured to improve in microyalve system, the microfluidic device is in the form of rotary compact disc, comprising four substrate which a first substrate (20) having at least main reservoir (22) and secondary reservoir (24) containing working fluid (26), a second substrate (30) with at least a microvalve in the formed of diaphragm (32) structure which is actuated by the working fluid (26), a third substrate (40) with at least one reservoir (46) for fluid sample (44) and a microfluidic structure (42) as fluid sample pathway and a fourth substrate (50) with at least one microchannel (54) as an air flow passage. The microfluidic device has improved the valve system by applying a microchannel (54) that has at least two vent holes (52) and constriction feature (56) to allow and accelerate air from external environment to flow and generate pressure difference in order to cause the movement of said working fluid (26) for the working fluid to move the passive microvalve.

    Abstract translation: 改进的微流体装置(10)被配置为在微观系统中改进,微流体装置是旋转光盘的形式,包括四个基板,第一基板(20)至少具有主储存器(22)和第二储存器(24) )包含工作流体(26)的第二基板(30),具有由工作流体(26)致动的隔膜(32)结构形成的至少一个微型阀的第二基板(30),具有至少一个储存器 (46)和作为流体样品通道的微流体结构(42)和具有至少一个微通道(54)作为空气流动通道的第四基板(50)。 微流体装置通过施加具有至少两个通气孔(52)和收缩特征(56)的微通道(54)来改善阀系统,以允许和加速来自外部环境的空气流动并产生压力差,从而使 用于工作流体的所述工作流体(26)的移动以移动被动微型阀。

    MICRO-HOTPLATE BASED GAS SENSOR
    6.
    发明申请
    MICRO-HOTPLATE BASED GAS SENSOR 审中-公开
    基于微型HOTPLATE的气体传感器

    公开(公告)号:WO2012078023A1

    公开(公告)日:2012-06-14

    申请号:PCT/MY2011/000093

    申请日:2011-06-14

    CPC classification number: G01N27/12 G01N27/18

    Abstract: The present invention provides a chemo-resistive gas sensor in which consists of two chemo-resistive sensor elements (16, 36) placed on both sides of a micro-hotplate array (26). It is capable of providing lower power consumption compared to existing one-side sensing membrane gas sensor. An embodiment of the invention has the two sensor elements to be of same material to increase the sensitivity of the device. Another embodiment of the invention has two sensor elements of different material to allow different gas to be monitored. The proposed two membranes may be arranged to provide multiple gas solution for remote application and device miniaturization.

    Abstract translation: 本发明提供了一种化学电阻气体传感器,其中包括放置在微电热器阵列(26)两侧的两个化学电阻传感器元件(16,36)。 与现有的单侧感应膜式气体传感器相比,它能够提供更低的功耗。 本发明的一个实施例具有两个传感器元件以相同的材料以增加装置的灵敏度。 本发明的另一个实施例具有不同材料的两个传感器元件,以允许监测不同的气体。 所提出的两个膜可以被布置成提供用于远程应用和装置小型化的多种气体解决方案。

    A MICROFLUIDIC CHANNEL AND METHODS OF REMOVING BUBBLES FROM FLUID IN THE MICROFLUIDIC CHANNEL
    7.
    发明申请
    A MICROFLUIDIC CHANNEL AND METHODS OF REMOVING BUBBLES FROM FLUID IN THE MICROFLUIDIC CHANNEL 审中-公开
    在微流通道中从流体中除去泡沫的微流通道和方法

    公开(公告)号:WO2012064172A1

    公开(公告)日:2012-05-18

    申请号:PCT/MY2011/000083

    申请日:2011-06-07

    Abstract: The invention discloses an apparatus and methods of puncturing bubbles from fluid in a microfluidic channel (104). The primary sharp protuberance (103) punctures the larger bubbles. The air vent (102) traps and removes the bubbles created after the larger bubbles have been broken by primary sharp protuberance (103). The secondary sharp protuberance (106) punctures the escaped bubbles which were not broken by the primary sharp protuberance (103) or not removed by air vent (102). Various sharp protuberances array can be integrated inside the microfluidic channel (104) to puncture the bubbles in the fluid flow path.

    Abstract translation: 本发明公开了一种在微流体通道(104)中从流体中刺穿气泡的装置和方法。 主要的尖锐突起(103)刺穿较大的气泡。 通气孔(102)捕获和去除在较大气泡已经被初级尖锐突起(103)破裂之后产生的气泡。 第二尖锐突起(106)刺穿未被主锐利突起(103)打破或未被通气孔(102)去除的逸出的气泡。 可以在微流体通道(104)内集成各种尖锐的突起阵列以刺穿流体流动路径中的气泡。

    METHOD OF FABRICATING NANO-RESISTORS
    8.
    发明申请
    METHOD OF FABRICATING NANO-RESISTORS 审中-公开
    制造纳米电阻器的方法

    公开(公告)号:WO2011096790A2

    公开(公告)日:2011-08-11

    申请号:PCT/MY2010/000317

    申请日:2010-12-13

    CPC classification number: H01L27/0802

    Abstract: The present invention describes a novel method of fabricating nano-resistors (22) which allows full integration with standard CMOS fabrication process. The resistor comprises long and thin nano-structures as resistive element. It is formed by conductive nano-spacers (18B) on insulating layer. An embodiment of such structure is polysilicon nano-structures doped or implanted with n-type or p-type ions (20) to improve material conductance. The electrical properties of the device will change with respect to the dimension of these nano-structures. Resistors with polysilicon nano-structures down to 10 nm can be produced with resulting measured resistance in the MOhm scale.

    Abstract translation: 本发明描述了制造纳米电阻器(22)的新颖方法,其允许与标准CMOS制造工艺完全集成。 电阻器包括长而薄的纳米结构作为电阻元件。 它由绝缘层上的导电纳米间隔物(18B)形成。 这种结构的一个实施例是掺杂或注入n型或p型离子(20)以改善材料电导的多晶硅纳米结构。 器件的电性能将随着这些纳米结构的尺寸而改变。 具有低至10nm多晶硅纳米结构的电阻可以在MOhm标度下产生所测量的电阻。

    AN IMPROVED MICRO CHECK VALVE
    9.
    发明申请
    AN IMPROVED MICRO CHECK VALVE 审中-公开
    改进的微型检查阀

    公开(公告)号:WO2009066980A2

    公开(公告)日:2009-05-28

    申请号:PCT/MY2008/000145

    申请日:2008-11-20

    Inventor: LEE, Hing Wah

    CPC classification number: F16K99/0001 F16K15/026

    Abstract: The present invention discloses a micro check valve (100) for use in controlling the flow of fluid across a channel (160) in a micro-fluidic system, said valve (100) housed within a valve seat (140) and comprising a polygonal mass (110) connected to a base (120) through a resilient means (130). The mass (110) is a polygonal member with a predetermined thickness having a first side surface (101 ) exposed to the entry of fluid flowing in the channel (160), a second side surface (102) distanced apart and parallel to the first side surface (101 ), and having a longer length than the first side surface (101 ), a third side surface (103) and a fourth side surface (104) adjoining both ends of the first side surface (101 ) and the second side surface (102), said third side surface (103) and fourth side surface (104) disposed with a plurality of protruding dimples (106). Elastic deformation of the resilient means (130) due to pressure exerted on the mass (110) controls the flow of fluid across the channel (160), whereby establishment of a sealing contact between the mass (110) and the valve seat (140) blocks the flow of fluid across the channel (160) and a release of sealing contact between the mass (110) and the valve seat (140) allows the flow of fluid across the channel (160).

    Abstract translation: 本发明公开了一种用于控制流过微流体系统中的通道(160)的流体的微型止回阀(100),所述阀(100)容纳在阀座(140)内,并包括多边形质量 (110)通过弹性装置(130)连接到基座(120)。 质量块(110)是具有预定厚度的多边形构件,具有暴露于在通道(160)中流动的流体入口的第一侧表面(101),与第一侧面间隔开并平行的第二侧表面 表面(101),并且具有比第一侧表面(101)更长的长度;与第一侧表面(101)和第二侧表面(101)的两端相邻的第三侧表面(103)和第四侧表面 (102),所述第三侧面(103)和第四侧面(104)配置有多个突出凹部(106)。 由于施加在质量块(110)上的压力,弹性装置(130)的弹性变形控制流体通过通道(160)的流动,由此建立质量块(110)和阀座(140)之间的密封接触, 阻止流体流过通道(160),并且质量块(110)和阀座(140)之间的密封接触的释放允许流体流过通道(160)。

    FULLY INTEGRATED ISFET- VALVELESS MICROPUMP
    10.
    发明申请
    FULLY INTEGRATED ISFET- VALVELESS MICROPUMP 审中-公开
    全面集成的ISFET无阀微型计算机

    公开(公告)号:WO2009045092A2

    公开(公告)日:2009-04-09

    申请号:PCT/MY2008/000117

    申请日:2008-09-29

    CPC classification number: F04B19/006 G01N27/4148

    Abstract: The present invention relates to a fully integrated ISFET valveless micropump for use as a pH sensor and as a chemical based sensor especially intended for Wireless Sensor Network (WSN) characterized in that wherein the valveless pump with ISFET is embedded along a pump channel and temperature sensors at its inlet and wherein a membrane in the middle is the pump diaphragm and is electrostatically actuated by an electrode above it which is deposited on the glass and wherein when the membrane controlled by a microcontroller is in motion, fluid or gas would be pumped in thru the inlet and travels thru the channel where ISFET is located and out thru the outlet.

    Abstract translation: 本发明涉及一种完全集成的ISFET无阀微泵,其用作pH传感器和特别用于无线传感器网络(WSN)的基于化学物的传感器,其特征在于,其中具有ISFET的无阀泵是 沿着泵通道嵌入并且在其入口处嵌入温度传感器,并且其中在中间的膜片是泵膜片并且由其上方沉积在玻璃上的电极进行静电致动,并且其中当由微控制器控制的膜运动时, 流体或气体将通过入口泵入并穿过ISFET所在的通道并通过出口流出。

Patent Agency Ranking