Machine learned models for search and recommendations

    公开(公告)号:US12287819B2

    公开(公告)日:2025-04-29

    申请号:US18415551

    申请日:2024-01-17

    Applicant: Maplebear Inc.

    Abstract: A system may generate a prompt based in part on a search query from a customer client device. The prompt instructs a machine learned model to provide item predictions. And the model was trained by: converting structured data describing items of an online catalog to annotated text data (unstructured data), generating training examples based in part on the annotated text data, and training the model using the training examples. The system may receive item predictions generated by the prompt being applied to the machine learned model, the item predictions may have corresponding item identifiers. The item predictions are processed to identify a recommended item from the item predictions. The processing includes determining item information for the recommended item using an item identifier associated with the recommended item. The item information is provided to the customer client device.

    Generating Sponsored Content Pages Using Large Language Machine-Learned Models

    公开(公告)号:US20250124498A1

    公开(公告)日:2025-04-17

    申请号:US18917136

    申请日:2024-10-16

    Applicant: Maplebear Inc.

    Abstract: An online system presents a sponsored content page to a user in conjunction with a model serving system. The online system accesses a content page for a food item and identifies one or more sponsorship opportunities at the content page. The online system identifies one or more candidate sponsors for each sponsorship opportunity. The online system selects a bidding sponsor for the sponsorship opportunity from the one or more candidate sponsors and a candidate item associated with the bidding sponsor as a sponsored item. The online system provides a content page, a description of the sponsored item, and a request to generate a sponsored content page for the sponsorship opportunity to a model serving system. The online system receives a sponsored content page generated by a machine-learning language model at the model serving system and presents the sponsored content page to a user.

    WEAKLY SUPERVISED EXTRACTION OF ATTRIBUTES FROM UNSTRUCTURED DATA TO GENERATE TRAINING DATA FOR MACHINE LEARNING MODELS

    公开(公告)号:US20250117442A1

    公开(公告)日:2025-04-10

    申请号:US18987482

    申请日:2024-12-19

    Applicant: Maplebear Inc.

    Abstract: An online concierge system receives unstructured data describing items offered for purchase by various warehouses. To generate attributes for products from the unstructured data, the online concierge system extracts candidate values for attributes from the unstructured data through natural language processing. One or more users associate a subset candidate values with corresponding attributes, and the online concierge system clusters the remaining candidate values with the candidate values of the subset associated with attributes. One or more users provide input on the accuracy of the generated clusters. The candidate values are applied as labels to items by the online concierge system, which uses the labeled items as training data for an attribute extraction model to predict values for one or more attributes from unstructured data about an item.

    Accounting for item attributes when selecting items satisfying a query based on item embeddings and an embedding for the query

    公开(公告)号:US12259894B2

    公开(公告)日:2025-03-25

    申请号:US17666531

    申请日:2022-02-07

    Applicant: Maplebear Inc.

    Abstract: An online system maintains various items and maintains values for different attributes of the items, as well as an item embedding for each item. When the online system receives a query for retrieving one or more items, the online system generates an embedding for the query. Based on measures of similarity between the embedding for the query and item embeddings, the online system selects a set of items. The online system identifies a specific attribute of items and generates a whitelist of values for the specific attribute based on measures of similarity between item embeddings for items in the selected set and the embedding for the query. The online system removes items having values for the selected attribute outside of the whitelist of values from the selected set of items to identify items more likely to be relevant to the query.

    PICKING SEQUENCE OPTIMIZATION WITHIN A WAREHOUSE FOR AN ITEM LIST

    公开(公告)号:US20230394404A1

    公开(公告)日:2023-12-07

    申请号:US18235230

    申请日:2023-08-17

    Applicant: Maplebear Inc.

    Abstract: An online concierge system receives a delivery order containing a list of items, generates a suggested picking sequence for picking the delivery order in a warehouse, and transmits the suggested picking sequence to a mobile device of the shopper. Generating the suggested sequence includes applying a trained item sequence model to the delivery order. Training the item sequence model includes accessing data about a set of historical orders, determining a pairwise distance between each pair of aisles in the warehouse based on the data about the set of historical orders, and generating a distance graph based on the pairwise distance between each pair of aisles in the warehouse. The plurality of nodes represent a plurality of aisles in the warehouse, and the plurality of edges represent pairwise distances between pairs of aisles.

    Picking sequence optimization within a warehouse for an item list

    公开(公告)号:US11763229B2

    公开(公告)日:2023-09-19

    申请号:US17458127

    申请日:2021-08-26

    Applicant: Maplebear Inc.

    Abstract: An online concierge system generates a suggested picking sequence to reduce the amount of time for a shopper to fulfill an online order of items from a warehouse. The online concierge system determines an average amount of time to sequentially pick items between different aisle pairs for a warehouse based on timestamps from item fulfillment in historical orders. The system generates a distance graph including aisle nodes connected by edges representing the pairwise distance between aisles. The system solves a traveling salesperson problem to generate a ranked order of aisle nodes for each of the historical orders. The system generates a ranked global sequence of aisle nodes based on the plurality of ranked orders of aisle nodes. The system applies the ranked global sequence to new delivery orders to generate the suggested picking sequence for a shopper.

Patent Agency Ranking