Abstract:
There is provided an optical analysis technique which observes a polarization characteristic of a light-emitting particle using the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, the light detection region is irradiated with excitation light consisting of predetermined polarized light component(s) and the intensity of at least one polarized light component of the light from the light detection region is detected with moving the position of the light detection region of the optical system in a sample solution; a signal of each light-emitting particle is detected individually in the intensity of at least one polarized light component; and based on the intensity of at least one polarized light component of the signal of the detected light-emitting particle, the polarization characteristic value of the light-emitting particle is computed.
Abstract:
There is provided an optical analysis technique enabling the detection of the condition or characteristic of a particle to be observed contained at a low concentration or number density in a sample solution using a light-emitting probe. The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting probe having bound to a particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region), thereby detecting individually the particle crossing the inside of the micro region to enable the counting of the particle(s) or the acquisition of the information on the concentration or number density of the particle.
Abstract:
An optical analysis device includes a light source, a beam shaping unit, a relative movement unit, a photodetector, and a position detector. The light source unit generates a light beam. The beam shaping unit forms a flat beam portion. The relative movement unit is configured to cause the flat beam portion and a test sample including marker particles to relatively move in a minor axis direction of the flat beam portion. The photodetector is configured to detect a light intensity and a light emitting position in a plane orthogonal to the minor axis direction. The position detector is capable of detecting spatial positions of the marker particles on the basis of information on a relative movement amount of the flat beam portion, information on the light intensity and the light emitting position, and a change of the light intensity generated according to a relative movement of the flat beam portion.
Abstract:
A method for detecting a target nucleic acid molecule of the present invention includes a step of associating a first and third probes labeled with a first fluorescent substance which is an energy donor with a second probe labeled with a second fluorescent substance which is an energy acceptor to form an associate in a nucleic acid molecule; and a step of emitting light with an excitation wavelength of the first fluorescent substance to the associate to detect the target nucleic acid molecule using fluorescence released from the second fluorescent substance in the associate as an indicator, wherein a region associating with the second probe is between a region associating with the first probe and a region associating with the third probe in the target nucleic acid molecule.
Abstract:
There is provided an optical analysis technique of detecting light of a light-emitting particle in a sample solution in the scanning molecule counting method using the light measurement with a confocal or multiphoton microscope, for suppressing the scattering in detected results of signals of light of light-emitting particles smaller and achieving the improvement of accuracy. The inventive technique comprises moving the position of a light detection region along a predetermined route for multiple circulation times by changing the optical path of the optical system; detecting light from the light detection region and generating time series light intensity data during the moving of the light detection region and detecting individually a signal indicating light from each light-emitting particle existing in the predetermined route using the time series light intensity data obtained in the circulating movements of the light detection region of multiple times.
Abstract:
In the scanning molecule counting method using optical measurement with a confocal or multiphoton microscope, there is provided a technique of computing a light-emitting particle concentration which changes with time and detecting a concentration change velocity or a reaction velocity. The inventive optical analysis technique of detecting light of light-emitting particles in a sample solution generates time series light intensity data of light from a light detection region detected with moving the position of the light detection region of the microscope in the sample solution; measures successively an interval of generation times of signals of the light-emitting particles detected in the time series light intensity data; and determines the concentration or concentration change velocity of the light-emitting particles, using the successively measured signal generation time intervals.
Abstract:
There is provided a structure to make the setting of a criterion for eliminating noises easy in the scanning molecule counting method. In the inventive optical analysis technique of detecting light of a light-emitting particle in a sample solution, time series light intensity data of light from a light detection region detected with moving the position of the light detection region in the sample solution is generated, and a signal of a light-emitting particle individually is detected in the time series light intensity data, wherein a signal having a light intensity in a light intensity range set based upon a signal generation frequency integrated value distribution which is a distribution, obtained by using as a variable an intensity of a signal, of integrated values of generation frequencies of signals having an intensity not lower than the variable is extracted as the signal of the light-emitting particle.
Abstract:
There is provided a single particle detection technique based on a scanning molecule counting method, enabling individual detection of a single particle using light measurement with a confocal or multiphoton microscope, and quantitative observation of conditions or characteristics of the particle. The inventive technique of detecting a single particle in a sample solution detects light containing substantially constant background light from a light detection region with moving the position of the light detection region of the microscope in a sample solution to generate time series light intensity data; and detects individually a light intensity reduction occurred when a single particle which does not emit light (or a particle whose emitting light intensity in a detected wavelength band is lower than the background light) enters in the light detection region in the time series light intensity data as a signal indicating the existence of each single particle.
Abstract:
In the scanning molecule counting method using optical measurement with a confocal or multiphoton microscope, there is provided a technique of computing a light-emitting particle concentration which changes with time and detecting a concentration change velocity or a reaction velocity. The inventive optical analysis technique of detecting light of light-emitting particles in a sample solution generates time series light intensity data of light from a light detection region detected with moving the position of the light detection region of the microscope in the sample solution; measures successively an interval of generation times of signals of the light-emitting particles detected in the time series light intensity data; and determines the concentration or concentration change velocity of the light-emitting particles, using the successively measured signal generation time intervals.
Abstract:
The inventive technique of detecting and analyzing light from a light-emitting particle in accordance with the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope is characterized by detecting intensities of components of two or more wavelength bands of light from a light detection region of an optical system with moving the position of the light detection region in a sample solution by changing the optical path of the optical system of the microscope; detecting individually signals of the light from each light-emitting particle in the intensities of the components of the two or more wavelength bands of the detected light; and identifying a kind of light-emitting particle based on the intensities of the components of the two or more wavelength bands of the signals of the light of the detected light-emitting particle.