Abstract:
In the optical analysis technique of detecting an existence of a single particle in a sample solution with a confocal microscope or a multiphoton microscope according to the scanning molecule counting method of the present invention, the position of a light detection region is moved in the sample solution; the light intensity from the light detection region is measured so that light intensity data will be generated; a first occurrence probability in assuming a first condition that no single particles exist in the light detection region and a second occurrence probability in assuming a second condition that a single particle exists in the light detection region for a time variation of light intensity value on the light intensity data are computed; and a signal indicating each single particle is detected based on those occurrence probabilities, and thereby enabling improvements in the sensitivity and/or S/N ratio.
Abstract:
There is provided an optical analysis technique enabling identification of a kind of light-emitting particle corresponding to a signal on a time series light intensity data or identification of a signal corresponding to light-emitting particles other than a particle to be observed in an optical measurement using a confocal microscope or a multiphoton microscope. The inventive optical analysis technique measures simultaneously and separately intensities of lights of two or more wavelength bands from a light detection region in a sample solution containing light-emitting particles of two or more kinds to generate time series light intensity data of the respective wavelength bands; detects signals simultaneously generated on the time series light intensity data of at least two wavelength bands; and identifies the simultaneously generated signals as signals of a light-emitting particle of at least one specific kind.
Abstract:
There is provided a method of avoiding deterioration of the accuracy in the number of detected light-emitting particles due to that two or more light-emitting particles are encompassed at a time in the light detection region in the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, in the detection of an individual signal indicating light of a light-emitting particle by selectively detecting a signal having an intensity beyond a threshold value as a signal indicating light of a light-emitting particle in light intensity data produced through measuring light intensity during moving the position of a light detection region in a sample solution, the threshold value is set so that a signal indicating light from a light-emitting particle encompassed in a region narrower than the light detection region will be detected selectively.
Abstract:
There is provided a scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope, enabling characterization of a light-emitting particle or identification of a light-emitting particle with emitted light intensity of a single light-emitting particle measured individually. In the inventive optical analysis technique, with reference to the ratio of the intensities of simultaneously generated signals of the lights of at least two light-emitting sites having mutually different emission wavelengths, possessed by a light-emitting particle contained in a sample solution, the intensities being measured with moving the position of the light detection region of an optical system by changing the optical path of the optical system, a single light-emitting particle corresponding to the signals is identified, and the kind, the size, etc. of the light-emitting particle is identified.
Abstract:
In the scanning molecule counting method of measuring light intensity from a light detection region while moving the position of the light detection region of a confocal or multiphoton microscope in a sample solution containing light-emitting particles, generating time series light intensity data and detecting each of signals of the light-emitting particles individually in the data, wherein the light-emitting particles are formed by binding to a particle to be observed a light-emitting probe which emits light through binding to the particle to be observed and in which a stochastic transition between a non-light-emitting state and a light-emitting state occurs in the unbound state, the moving speed of the position of the light detection region is adjusted to make the time during which the unbound probe is encompassed by the moving light detection region longer than an average lifetime during which the probe is in the light-emitting state.
Abstract:
There is provided a microscopic observation technique capable of detecting a light-emitting object or a light-emitting particle moving in a thick sample by the scanning molecule counting method. In the inventive technique, the light from a light detection region of is detected the optical system of a confocal or multiphoton microscope is detected with while moving the light detection region in each observed subregion obtained by dividing a region to be observed into plural regions; the signal of the light from a light-emitting particle is individually detected; and the position of the light-emitting particle corresponding to the detected signal is determined in the region to be observed. The moving of the position of the light detection region in each observed subregion is performed continuously in at least two directions or and/or continuously multiple times in each observed subregion.
Abstract:
There is provided an optical analysis technique enabling the detection of the condition or characteristic of a particle to be observed contained at a low concentration or number density in a sample solution using a light-emitting probe. The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting probe having bound to a particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region), thereby detecting individually the particle crossing the inside of the micro region to enable the counting of the particle(s) or the acquisition of the information on the concentration or number density of the particle.
Abstract:
There is provided a structure to reduce the size of light intensity data in the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique of detecting light of a light-emitting particle in a sample solution, time series light intensity data of light from a light detection region detected with moving the position of the light detection region of the microscope in the sample solution is generated, and a signal of a light-emitting particle individually is detected in the time series light intensity data. In that case, regions where no signal indicating light of light-emitting particles exist in the time series light intensity data is removed from the time series light intensity data.
Abstract:
In the optical analysis technique of detecting an existence of a single particle is a sample solution with a confocal microscope or a multiphoton microscope according to the scanning molecule counting method of the present invention, the position of a light detection region is moved in the sample solution; the light intensity from the light detection region is measured so that light intensity data will be generated; a first occurrence probability in assuming a first condition that no single particles exist in the light detection region and a second occurrence probability in assuming a second condition that a single particle exists in the light detection region for a time variation of light intensity value on the light intensity data are computed; and a signal indicating each single particle is detected based on those occurrence probabilities, and thereby enabling improvements in the sensitivity and/or S/N ratio.
Abstract:
There is provided a scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope, enabling characterization of a light-emitting particle or identification of a light-emitting particle with emitted light intensity of a single light-emitting particle measured individually. In the inventive optical analysis technique, with reference to the ratio of the intensities of simultaneously generated signals of the lights of at least two light-emitting sites having mutually different emission wavelengths, possessed by a light-emitting particle contained in a sample solution, the intensities being measured with moving the position of the light detection region of an optical system by changing the optical path of the optical system, a single light-emitting particle corresponding to the signals is identified, and the kind, the size, etc. of the light-emitting particle is identified.