Abstract:
Described is a security document with a transparent security element (12) which is arranged in a window or in a transparent region of the security document and has a structure layer, in which a first region (12f) of the structure layer has an asymmetrical diffractive relief structure, wherein the first region (12f) has an optical effect which is unexpectedly different in a front view and in a rear view of the security document.
Abstract:
A method for producing security elements, security elements, a security document with at least one security element as well as a transfer film with at least one security element, wherein a three-dimensional object is recorded and a surface profile of the three-dimensional object, described by a function F(x,y), is determined, wherein the function F(x,y) describes the distance between the surface profile and a two-dimensional reference surface spanned by co-ordinate axes x and y at the co-ordinate points x and y. A first microstructure is determined in such a way that the structure height of the first microstructure is limited to a predetermined value smaller than the maximum distance between the surface profile and the two-dimensional reference surface, and the first microstructure provides an observer with a first optical perception which corresponds to the surface profile of the three-dimensional object described by the function F(x,y).
Abstract:
A method for producing a security element formed as a lenticular flip, including a micro-optical layer, a carrier substrate and an image layer, wherein the image layer includes n images for n=1 to i which are visible from an n-th observation angle allocated to the n-th image, and wherein n is at least 1. The images are imaged on a photoresist with parallel light in contact print or by means of projection. After the photoresist is developed, an image layer which includes the i images is present.
Abstract:
The invention relates to a multilayer body with a carrier film, a partial reflective layer, arranged on the surface of the carrier film, which is at least partially transparent in a first area and opaque in a second area, a partial decorative layer, arranged on a surface of the carrier film and/or the side of the decorative layer facing away from the carrier film, which is present in a third area and not present in a fourth area, wherein the first area overlaps the third area and the second area overlaps the third and the fourth areas. The invention furthermore relates to a method for producing such a multilayer body, a security element with such a multilayer body and a security document with such a security element.
Abstract:
A method for the production of a multilayer body, in particular a security element, includes: a) producing a metal layer on a substrate; b) partial demetalization of the metal layer to form a first item of optical information in a first area of the multilayer body; c) applying a partial lacquer layer in a second area of the multilayer body to form a second item of optical information, wherein the partial lacquer layer extends at least partially beyond the metal layer; d) structuring the partial metal layer in the second area using the partial lacquer layer as mask.
Abstract:
A method for producing security elements, security elements, a security document with at least one security element as well as a transfer film with at least one security element wherein a three-dimensional object is recorded and a surface profile of the three-dimensional object, described by a function F(x,y), is determined, wherein the function F(x,y) describes the distance between the surface profile and a two-dimensional reference surface spanned by co-ordinate axes x and y at the co-ordinate points x and y. A first microstructure is determined in such a way that the structure height of the first microstructure is limited to a predetermined value smaller than the maximum distance between the surface profile and the two-dimensional reference surface, and the first microstructure provides an observer with a first optical perception which corresponds to the surface profile of the three-dimensional object described by the function F(x,y).
Abstract:
A multilayer body with a carrier and a layer arranged thereon which comprises electrically conductive material in such an arrangement comprises an information area and a background area (18) which are galvanically separated from each other. In each information area a first zone (10) with electrically conductive material is provided, over the entirety of which electrically conductive material is conductively connected to it. In each background area a plurality of second zones with electrically conductive material is provided, which are galvanically separated from each other. Each first zone (10) preferably occupies a surface area that is at least five times larger than each of the second zones. The electrically conductive material is preferably provided with an average surface coverage which varies over all information areas and background areas (18) by less than 25%. A homogeneous appearance of the multilayer body is thereby ensured, and an item of information provided in the information area, provided by the shape, size and/or alignment of the first zone, is not visible without aids, and therefore cannot be copied.
Abstract:
The invention relates to a method for the production of a multilayer body, in particular a security element, comprising the following steps:a) producing a metal layer on a substrate; b) partial demetalization of the metal layer to form a first item of optical information in a first area of the multilayer body; c) applying a partial lacquer layer in a second area of the multilayer body to form a second item of optical information, wherein the partial lacquer layer extends at least partially beyond the metal layer; d) structuring the partial metal layer in the second area using the partial lacquer layer as mask. The invention further relates to a multilayer body produced in this way.
Abstract:
Described is a security document with a transparent security element (12) which is arranged in a window or in a transparent region of the security document and has a structure layer, in which a first region (12f) of the structure layer has an asymmetrical diffractive relief structure, wherein the first region (12f) has an optical effect which is unexpectedly different in a front view and in a rear view of the security document.
Abstract:
Method for producing a plastic molded part (1), wherein, in the method, a mold insert (3) with a diffractive surface relief (32) is provided, the mold insert (3) is inserted into one mold half of an injection mold (5) which, together with at least one further mold half, forms a cavity for producing the plastic molded part (1), wherein the mold insert (3) is inserted into the injection mold (5) such that the diffractive surface relief (32) forms a partial area of the surface of the cavity formed by the mold half (5), and the plastic molded part (1) is molded by injection molding by means of the injection mold (5). The invention furthermore relates to a mold insert as well as an injection mold for such a method, as well as a plastic molded part produced in this way.