Abstract:
The invention relates to MEMS-based display devices. In particular, the display devices may include actuators having two mechanically compliant electrodes. In addition, bi-stable shutter assemblies and means for supporting shutters in shutter assemblies are disclosed inclusion in the display devices.
Abstract:
An illumination device, comprising a reflective optical cavity (2104, 2116) including a plurality of light-transmissive regions (2108) through which light can escape the reflective optical cavity (2104, 2116); a light source (2118) arranged to introduce the light into the reflective optical cavity (2104, 2116); a plurality of light modulators (2102), each having at least first and second states, wherein, in the first state, a light modulator (2102) obstructs a corresponding light-transmissive region (2108) thereby preventing light introduced into the reflective optical cavity (2104, 2116) from illuminating an image pixel that corresponds to the light-transmissive region (2108), and in the second state, the light modulator (2102) allows light escaping the reflective optical cavity (2104, 2116) through the corresponding light-transmissive region (2108) to illuminate the image pixel corresponding to the light-transmissive region (2108).
Abstract:
The invention relates to methods of manufacturing display devices including the steps of forming a plurality of thin-film components and forming a plurality of mechanical light modulators on top of the thin-film components, where the plurality of mechanical light modulators include a layer of amorphous silicon.
Abstract:
The invention relates to spatial light modulators for use in display apparatus. In particular, the invention relates to spatial light modulators that include a substrate defining a plane and a shutter suspended over the substrate by a compliant beam. The compliant beam has a cross-sectional thickness, in a dimension parallel to the plane of the substrate, between about 0.2µm and about 10µm. In one embodiment, a thickness of the compliant beam in a dimension perpendicular to the plane of the substrate is at least about 1.4 times the cross-sectional width of the compliant beam in the dimension parallel to the plane of the substrate.
Abstract:
A display apparatus comprises a first substrate having a front-facing surface and a rear-facing surface. The display apparatus further comprises a second substrate in front of the front-facing surface of the first surface, a reflective aperture layer including a plurality of apertures disposed on the front-facing surface of the first substrate, and a plurality of MEMS light modulators for modulating light directed towards the plurality of apertures to form an image.
Abstract:
This disclosure provides systems, methods and apparatus for a multi-state shutter assembly. The multi-state shutter assembly can be used in an electronic display. The shutter assembly can include a movable light obstructing component. The shutter assembly also can include first and second actuators configured to move the light obstructing component between three states, including a fully light obstructive state, a substantially transmissive state, and a partially transmissive state. At least one of the three states is a neutral state in which both the first and second actuators are in an unactuated state. The shutter assembly also can include a controller configured to control the first and second actuator to selectively move the light obstructing component into each of the three states.
Abstract:
This disclosure provides systems, methods and apparatus for enabling a display to have a faster switching rate and an increased aperture ratio by using looped electrical interconnects with a reduced footprint. In one aspect, a display apparatus includes an array of display elements and a high-aspect ratio electrical interconnect connected to at least one display element in the array of display elements, wherein the high-aspect ratio electrical interconnect forms a loop that defines a closed boundary.
Abstract:
The invention relates to methods and apparatus for forming images on a display utilizing a control matrix to control the movement of MEMs-based light modulators.
Abstract:
This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid- filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble forms only at temperatures about 15°C to about 20°C below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
Abstract:
Display devices incorporating shutter-based light modulators are disclosed along with methods of manufacturing such devices. The methods are compatible with thin-film manufacturing processes known in the art and result in displays having lower power-consumption.