Abstract:
A display apparatus includes a first substrate a plurality of microelectromechanical systems (MEMS) light modulators formed from a structural material coupled to the first substrate and a second substrate separated from the first substrate. A plurality of spacers extend from the first substrate to keep the second substrate a minimum distance away from the plurality of light modulators. The spacers include a first polymer layer having a surface in contact with the first substrate a second polymer layer encapsulating the first polymer layer and a layer of the structural material encapsulating the second polymer layer. The spacers can be used as fluid barriers and configured to surround more than one but less than all of the MEMS light modulators in the display apparatus.
Abstract:
Display devices incorporating light modulators are disclosed along with methods of manufacturing such devices. According to some aspects of the invention, a control matrix for controlling light modulators of a display includes a light absorbing layer that includes a material having a substantially light absorbing property.
Abstract:
This disclosure provides systems, methods and apparatus for a multi-state shutter assembly. The multi-state shutter assembly can be used in an electronic display. The shutter assembly can include a movable light obstructing component. The shutter assembly also can include first and second actuators configured to move the light obstructing component between three states, including a fully light obstructive state, a substantially transmissive state, and a partially transmissive state. At least one of the three states is a neutral state in which both the first and second actuators are in an unactuated state. The shutter assembly also can include a controller configured to control the first and second actuator to selectively move the light obstructing component into each of the three states.
Abstract:
This disclosure provides systems, methods and apparatus for controlling pixels of a display apparatus. An apparatus including a plurality of pixels can be controlled by a control matrix. The control matrix includes for each pixel a first transistor that has a first threshold voltage and a second transistor that has a second threshold voltage. A single data interconnect provides a common data voltage to the first and second transistors to control the states of corresponding first and second light modulators.
Abstract:
This disclosure provides systems, methods and apparatus for enabling a display to have a faster switching rate and an increased aperture ratio by using looped electrical interconnects with a reduced footprint. In one aspect, a display apparatus includes an array of display elements and a high-aspect ratio electrical interconnect connected to at least one display element in the array of display elements, wherein the high-aspect ratio electrical interconnect forms a loop that defines a closed boundary.
Abstract:
The invention relates, in various aspects, to systems and methods for MEMS actuated displays that can be driven at high speeds and at low voltages for improved image quality and reduced power consumption.