Abstract:
A wireline-conveyed side-wall core coring tool for acquiring side-wall core from a geological formation for performing in-situ side-wall core analysis. The coring tool has a core analysis unit operable to measure geophysical properties of an acquired side-wall core. The measured geophysical properties may be used to determine the success of the acquisition of side-wall cores by the coring tool. The core analysis unit is operable of performing an in-situ interpretation of measured geophysical property of the side-wall core and transmitting in near real-time the measurements or the interpretation results to surface data acquisition and processing apparatus.
Abstract:
The porosities of subsurface earth formations surrounding a borehole are investigated using a logging tool run in the wellbore by repeatedly irradiating the formations with discrete bursts of high energy neutrons, measuring the populations of epithermal neutrons at near and far locations from the neutron source, and also measuring the rate of decay of the epithermal neutron population at a third location following each neutron burst and deriving therefrom a measurement of the epithermal neutron slowing down time. Formation porosity values derived from the near-and-far location population measurements are corrected for detector standoff effects by use, in accordance with a predetermined empirical relationship, of the epithermal slow down time measurement. Alternatively, formation porosities may be derived both from the near-and-far location measurements and from the epithermal slowing down time measurement, and the two differently-derived porosity values may be used independently to provide enhanced information of formation porosity or they may be compared to derive a standoff-corrected porosity value.
Abstract:
Various embodiments for shortening the overall length of a pulsed neutron generator having a high voltage power supply are disclosed, including but not limited to, providing the plurality of stages of a high voltage power supply wrapped circumferentially or helically about a radiation generator tube. Various techniques for reducing voltage differentials and mitigating the risk of arcing in these embodiments are also disclosed.
Abstract:
Systems, methods, and devices with improved electrode configuration for downhole nuclear radiation generators are provided. For example, one embodiment of a nuclear radiation generator capable of downhole operation may include a charged particle source, a target material, and an acceleration column between the charged particle source and the target material. The acceleration column may include several electrodes shaped such that substantially no electrode material from the electrodes is sputtered onto an insulator surface of the acceleration column during normal downhole operation.
Abstract:
Systems and methods for measuring neutron-induced activation gamma-rays in a subterranean formation are provided. In one example, a downhole tool for measuring neutron-induced activation gamma-rays may include a neutron source and a gamma-ray detector. The neutron source may emit neutrons according to a pulsing scheme that includes a delay between two pulses. The delay may be sufficient to allow substantially all neutron capture events due to the emitted neutrons to cease. The gamma-ray detector may be configured to detect activation gamma-rays produced when elements activated by the emitted neutrons decay to a non-radioactive state.
Abstract:
A scintillator type radiation detector package is provided including a scintillation crystal directly coupled to the window of a photomultiplier. A scintillator package is also provided having a longer life at wellbore temperature with minimal deterioration of a hygroscopic scintillation crystal(s). Direct optical coupling of the scintillator to the photomultiplier reduces the amount of light lost at coupling interfaces and improved detection resolution over the conventional structures having separate packages for crystal and photomultiplier.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
Methods and related systems are described for the detection of nuclear radiation. The system can include a scintillator material that intrinsically generates radiation and a photodetection system coupled to the scintillator material and adapted to generate electrical signals based on light emitted from the scintillator material. A processing system adapted and programmed to receive the electrical signals, to generate a count rate reference value based at least in part on electrical signals generated in response to the light emitted from the scintillator material due to the intrinsically generated radiation.
Abstract:
Logging-while-drilling tools incorporating an electronic radiation generator, such as an electronic X-ray generator, and a method for using the same are provided. One example of such a logging-while-drilling tool may include a circumferential drill collar, a chassis disposed radially interior to the drill collar, and an electronic X-ray generator and an X-ray detector disposed within the chassis. The electronic X-ray generator may emit X-rays out of the logging-while-drilling tool into a subterranean formation. The X-ray detector may detect X-rays that return to the logging-while-drilling tool after scattering in the subterranean formation, which may be used to determine a density and/or a lithology of the subterranean formation.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.