Abstract:
Techniques for routing an emergency call originated by a mobile station via a femto access point (FAP) in a wireless network and for locating the mobile station are described. In an aspect, the emergency call may be routed to an appropriate emergency center based on location information for the FAP. In one design, the location information for the FAP may include a macro cell identity (ID) and/or a macro Mobile Switching Center (MSC) ID determined based on the FAP location. The macro cell ID and/or the macro MSC ID may be assigned to the FAP and used to access a database, which may store routing information for emergency centers versus cell IDs and MSC IDs. In another design, the location information for the FAP may include a location estimate for the FAP. The location estimate may be used to access a geographic database, which may store routing information for emergency centers for different geographic areas.
Abstract:
Techniques for supporting triggered location services are described. In one design, at least one location related measurement for a terminal may be obtained and used to detect for a trigger event. For an equidistance triggered service, a trigger event may be declared if the distance traveled by the terminal exceeds a predefined distance. For a relative terminal to terminal triggered service, a trigger event may be declared if the terminal is inside or outside, or enters, or leaves a moving geographical target area defined by a reference terminal. For a velocity triggered service, a trigger event may be declared if the maximum velocity of the terminal exceeds a predefined velocity. For a time-distance-velocity combination triggered service, a trigger event may be declared based on distance traveled by the terminal, velocity of the terminal, and time since the last report. For all services, a report may be sent if a trigger event has occurred.
Abstract:
Techniques for supporting location services with roaming are described. A mobile station interacts with a home mobile positioning center (H-MPC) in a home network for location services even when roaming. The mobile station communicates with a visited network for a data session and receives a request for its location. The mobile station sends first information (e.g., SID and NID) indicative of its current network location to the H-MPC. The H-MPC determines a serving mobile positioning center (S-MPC) in the visited network based on the first information. The S-MPC determines a serving position determining entity (S-PDE) in the visited network based on the first information. Depending on the selected positioning method, the H-MPC may receive an S-PDE address or a position estimate of the mobile station from the S-MPC and may forward this information to mobile station.; The mobile station may communicate with the S-PDE for positioning using the S-PDE address.
Abstract:
Techniques for supporting triggered location services are described. In one design, at least one location related measurement for a terminal may be obtained and used to detect for a trigger event. For an equidistance triggered service, a trigger event may be declared if the distance traveled by the terminal exceeds a predefined distance. For a relative terminal to terminal triggered service, a trigger event may be declared if the terminal is inside or outside, or enters, or leaves a moving geographical target area defined by a reference terminal. For a velocity triggered service, a trigger event may be declared if the maximum velocity of the terminal exceeds a predefined velocity. For a time-distance-velocity combination triggered service, a trigger event may be declared based on distance traveled by the terminal, velocity of the terminal, and time since the last report. For all services, a report may be sent if a trigger event has occurred.
Abstract:
An implementation of a system, device and method for communicating location data of a mobile station, enhancing location data, optimally communicating Assistance Data, and/or reducing rebids of Measure Position Request messages in a wireless network.
Abstract:
Techniques for supporting location services in a user plane location architecture such as Secure User Plane Location (SUPL) are described. In an aspect, a terminal informs a location server of service capabilities of the terminal. The location server uses the service capabilities to request only location services supported by the terminal and to avoid requesting unsupported location services. The terminal generates a message containing its service capabilities and sends the message via a user plane, e.g., SUPL. The location server receives the message, obtains the service capabilities of the terminal, and stores these service capabilities for future network-initiated location sessions with the terminal. The location server determines whether a location service is supported by the terminal based on the service capabilities of the terminal. The location server communicates with the terminal via the user plane for the location service if supported by the terminal.