Abstract:
An apparatus for reducing interference of a signal over a plurality of stages includes a processor configured to determine at least two equalizer taps based on at least one of a covariance and a channel impulse response of the signal. The processor is further configured to estimate at least one additional equalizer tap based on the at least two equalizer taps. In addition, the processor is configured to reduce, for each of the plurality of stages, the interference of the signal for that stage using an equalizer tap from either the at least two equalizer taps or the at least one additional equalizer tap, so that the signal for the next stage in the plurality of stages has the reduced interference. A method is also provided for reducing interference of a signal over a plurality of stages.
Abstract:
A method and apparatus for efficient candidate frequency search while initiating a handoff in a code division multiple access communication system. The method includes when the pilot signal is transmitted by the mobile station that is power controlled to a target receive level, the traffic channel power level is increased relative to the pilot channel to improve receiver performance. An improved feature is that the received pilot received at the base station stays the same while the receiver receives extra energy in the redundant traffic symbols received to enhance the probability of correctly decoding the received frame. The base station detects the absence of the mobile station transmitted signal from the frequency of interest. If the base station is aware of the starting time and duration of the absence, it can focus its detection during this predetermined time period. The performance can be improved if the absence of the signal is spread across two frames at the frame boundary.
Abstract:
Techniques for mitigating interference on the reverse link in a wireless communication system are described. Terminals interfering with one another and communicating with different sectors on the reverse link may be identified. The terminals may be scheduled in time intervals selected to mitigate interference. For example, each terminal may be scheduled on at least one pseudo-randomly selected time interval, on a pseudo-randomly selected interlace that includes evenly spaced time intervals, on a different set of at least one time interval, on a different interlace, etc. A terminal may receive an assignment of at least one time interval for transmission on the reverse link to a serving sector. The at least one time interval may be selected to mitigate interference to terminals in neighbor sectors.