Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may transmit, to a base station, a UE capability message associated with a number of downlink multiple-input and multiple-output (MIMO) layers supported at the UE. The UE may receive a configuration for a set of downlink MIMO layers including a first subset of downlink MIMO layers configured for a first cell and a second subset of downlink MIMO layers configured for a second cell. The UE may allocate a first set of resources to the first cell or the second cell, or both, based on the first and the second subset of downlink MIMO layers. The UE may determine a second set of resources are unallocated to the set of downlink MIMO layers and allocate the second set of resources to the first cell or the second cell, or both.
Abstract:
Aspects presented herein enable updating the codebook configuration upon the changing of the cover or case of the UE. The apparatus applies a first codebook from a plurality of preconfigured codebooks. The apparatus detects a change of a cover state of the UE, wherein the change alters a transmission beam pattern at the UE. The apparatus applies a second codebook from the plurality of preconfigured codebooks based on the change of the cover state.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a radio resource control (RRC) resume message, associated with transitioning the UE from an inactive state to a connected state. The UE may configure, based at least in part on receiving the RRC resume message, the UE with a serving cell common configuration, associated with a serving cell of the UE, received in a system information block (SIB) associated with the serving cell. Numerous other aspects are provided.
Abstract:
Resource and power savings in internal data transfer in enhanced multimedia broadcast-multicast service (eMBMS) is disclosed herein which may include receiving, by a modem processor of a mobile device, data packets of a data object from a broadcast-multicast service. The modem processor may buffer the received data packets without forwarding the buffered data packets to an application processor associated with the modem processor. The modem processor may also determine an end of a segment of the data object. The segment may indicate a period during which the data object is scheduled to be received by the modem processor. The modem processor may forward, in a single data burst, the buffered data packets to the application processor before the end of the segment.
Abstract:
Embodiments include methods implemented by a processor of a mobile communication device for managing tune-aways by a radio frequency resource supporting a first subscription to support a second subscription. The processor may determine a data loss ratio of the data of a media file that is lost in transmission to the mobile communication device. The processor may compare the data loss ratio of the data to a first data loss ratio threshold and a second data loss ratio threshold, and the processor may block a tune-away event of the radio frequency resource from the first subscription to the second subscription in response to determining that the data loss ratio of the data is greater than the first data loss ratio threshold and less than the second data loss ratio threshold.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus sends a message including an indication of at least one frequency of interest and at least one alternative frequency of interest. In an aspect, the at least one frequency of interest is used to provide a set of multimedia broadcast multicast service (MBMS) services and the at least one alternative frequency of interest is used to provide a subset of MBMS services of the set of MBMS services. The apparatus receives, for each MBMS service in the set of MBMS services, said each MBMS service using one of the at least one frequency of interest or the at least one alternative frequency of interest based on the message.
Abstract:
A method for determining candidate radio access technology (RAT) layers includes selecting one or more initial candidate RAT layer, for each configured RAT type of a UE, for a target RAT candidate list. The target can be for redirection or handover, for example. Each initial candidate RAT layer is selected regardless of network indicated RAT priorities and measurement object IDs. The method also includes selecting additional candidate RAT layers, for the list, based on the network indicated RAT priorities or the measurement object IDs. The method may be specified for when a UE is in a connected mode or an idle mode.
Abstract:
Methods, systems, and devices are described for reducing congestion in a wireless communications system. A second connection failure is detected, and a difference between a timestamp of the second connection failure and a timestamp of a first connection failure is calculated. Upon determining that the difference satisfies a first time threshold, information relating to one or more previous connection failures is cleared. A time period is identified. A number of connection failures from a cell that occur during the time period is identified. A determination is made as to whether the number of connection failures satisfies a threshold. Upon determining that the number of connection failures satisfies the threshold, a future connection request may be withheld for a time period.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for reporting signal quality in overlapping Multimedia Broadcast Single Frequency Networks (MBSFN) areas. A UE may determine a signal quality estimate for each of two or more overlapping MBSFN areas based on Signal to Noise Ratio (SNR) information and Modulation and Coding Scheme (MCS) information for the MBSFN area. The UE may then determine a combined signal quality based on the signal quality estimates of the MBSFN areas.
Abstract:
A method, an apparatus, and a computer program product for wireless|communication are provided. The apparatus (830) receives an MBMS service from a|first cell (812) based on first cell MBSFN service configuration information of|the first cell. The apparatus switches from being served by the first cell to a|second cell (814). The apparatus attempts to receive the MBMS service from the|second cell by utilizing the first cell MBSFN service configuration information|prior to obtaining second cell MBSFN service configuration information of the|second cell.