Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a winwin scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
Abstract:
A method for wireless communications includes reducing transmission power, by a femto base station, at its radio frequency (RF) transmitter, and cancelling a transmitted data signal of the RF transmitter at its network listen (NL) receiver. The reduction occurs in response to: occurrence of a network listen process; and/or a signal quality of the local macro coverage area exceeding a threshold quality. Additionally or alternatively, the femto base station may detect quality of its macro coverage area, and respond to the signal quality being below the threshold quality by: suspending reduction of transmission power and cancellation of the transmitted data signal; suspending the RF transmitter during transmission gaps assigned to user equipments (UEs); and triggering an NL operation in response to suspension of the RF transmitter, wherein the NL operation occurs within the duration of each of the transmission gaps.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method and apparatus resolve issues related to voice and data handovers between micro cells, femto cells and other small cells, and to handovers from macro cells to small cells are becoming increasingly significant as small cells are more widely deployed. In order to handoff a call associated with a user equipment, a base station attempts to identify neighboring cells that are within communication range of the user equipment based on a primary scrambling code and delays between multiple transmissions of the PSC detected by the user equipment and reported to the base station by the user equipment.
Abstract:
A mobile device provides first information to an access point over an out-of-band wireless link. The access point uses the first information to coarsely synchronize with a macrocell base station. The access point transmits a low power pilot signal that is formed using a pseudo-random noise (PN) sequence. The mobile device uses the out-of-band wireless link to provide second information to the access point that indicates a PN phase of the pilot signal with respect to a reference time point. The access point uses the second information to finely synchronize with the macrocell base station. The mobile device communicates with a mobile operator core network through the access point using an in-band wireless link to the access point. The mobile device compensates for propagation delay when obtaining time information. The mobile device provides additional information to the access point, which the access point uses to adjust for continued clock drift.
Abstract:
Disclosed are methods, systems, apparatus, devices, products, and other implementations, including a method that includes identifying at least one neighbor small-area cell of a first small-area cell, exchanging information between the first small-area cell and the identified at least one neighbor small-area cell, the information including neighbor information for the first small-area cell and for the at least one neighbor small-area cell, and automatically configuring the first small-area cell and the at least one neighbor small-area cell for communication with a user equipment based, at least in part, on the information exchanged between the first and the at least one neighbor small-area cells.
Abstract:
A method of providing signaling information for a wireless communication node includes: obtaining, at first user equipment (UE), first information associated with a first node of a first radio access technology (RAT) network that uses a first RAT, the first UE being configured for wireless telecommunication; and sending, in response to obtaining the first information, second information from the first UE to a second node of a second RAT network that uses a second RAT that is different from the first RAT.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are disclosed for providing services, such as voice services, within flexible bandwidth systems. In general, the scaling of one or more aspects of a flexible bandwidth system may be compensated for through altering one or more aspects within a code domain. The tools and techniques may include scaling spreading factors (with rate matching tuning in some embodiments), multi-code transmission, code rate increases, AMR codec rate adjustments, and/or higher order modulation. Subframe decoding approaches for the reception scheme may also be utilized. These tools and techniques can be flexibly implemented on the mobile device and/or base station side. Some embodiments may also minimize the latency introduced by the transmission and/or reception process. Flexible bandwidths systems may utilize portions of spectrum that may be too big or too small to fit a normal bandwidth waveform.
Abstract:
Methods, systems, and devices for separating signaling data and traffic data onto separate carriers for wireless communications systems are provided. Some embodiments utilize flexible bandwidth that may utilize portions of spectrum that may not be big enough to fit a normal waveform through utilizing flexible waveforms. Flexible bandwidth systems may lead to reduced data rate on the signaling or other channels. Separating the signaling and the data traffic into different flexible bandwidth carriers so that assigned resources can be customized to different traffic patterns may address this issue. In some embodiments, the signaling data is received and/or transmitted over a first carrier separate from any other traffic data. For example, the signaling data may be received and/or transmitted over the first band carrier without any other traffic data. The traffic data and/or network data associated with the signaling data may be received and/or transmitted over a separate, second carrier.
Abstract:
Methods, systems, and devices are described for making scaling adjustments with respect to a fractional subsystem in a wireless communications system. To handle the effects of scaling associated with fractional bandwidth systems, different adjustments may be made to maintain certain quality of service (QoS) requirements, for example. Scaling adjustments may include identifying a scaling factor for the fractional subsystem and a parameter and/or a timer associated with the fractional subsystem. An adjustment associated with the parameter and/or timer may be determined based on the scaling factor. The adjustment may be applied with respect to the parameter and/or timer for at least a portion of the fractional subsystem or another portion of the wireless communications system.