Abstract:
Apparatus and methods of hand-in of a call from a macro node to a femto node include receiving, at a target interface to a plurality of access points, a handoff request to handoff a call of a mobile station, wherein the handoff request comprises a cellular identifier corresponding to a pilot identifier of a pilot signal. Further, the apparatus and methods include determining that the plurality of access points share the cell identifier, and forwarding the handoff request to the plurality of access points that share the cell identifier. Additionally, the apparatus and methods include generating a handoff request acknowledgement comprising a pre-reserved resource that is common to the plurality of access points, wherein the pre-reserved resource enables the mobile station to communicate with the plurality of access points, and transmitting the handoff request acknowledgement to initiate the hand-in to one of the plurality of access points.
Abstract:
Systems and methodologies are described that facilitate synchronizing timing among wireless nodes in a wireless communication network. A tracking wireless node can synchronize to a global positioning system (GPS) signal if available. Alternatively, the tracking wireless node can receive quality metrics related to one or more target nodes. The quality metrics can relate to parameters that can be utilized to evaluate the target node for timing synchronization. Based on the quality metrics, the tracking wireless node can select a target wireless node for timing synchronization. The tracking wireless node can subsequently synchronize timing with the target wireless node. In addition, the tracking wireless node can continually evaluate surrounding wireless nodes to detect whether other wireless nodes have higher quality metrics than the current target wireless nodes and can accordingly resynchronize with nodes having higher metrics.
Abstract:
A set of wireless relay nodes are managed to facilitate inter-node routing of packets in the set. In some aspects, unique identifiers are defined for the wireless relay nodes to facilitate routing packets within the set. In some aspect a routing table is provided to each of the wireless relay nodes, wherein the routing table identifies each wireless relay node in the set and a next-hop entity for each of these wireless relay nodes. Each of the wireless relay nodes may then define a forwarding table based on the routing table.
Abstract:
Signaling-only access may be established with an access node (104) under certain circumstances such as, for example, upon determining that a node (102) is not authorized for data access at the access node (102). A node (104) that is not authorized for data access at an access node (104) may still be paged by the access node (104) through the use of signaling-only access. In this way, transmissions by the access node (104) may not interfere with the reception of pages at the node (302). A first node may be selected for providing paging (102) while a second node (106) is selected for access (304) under certain circumstances such as, for example, upon determining that the second node provides more desirable service than the first node.
Abstract:
A backup page is provided for a node that misses a page. In some aspects, a first type of access point in a system provides a backup page for an access terminal that is idling on a second of access point in the system in the event the access terminal misses a page by the second of access point in the system. An access point of the first type may page the access terminal according to a first paging schedule while an access point of the second type may page the access terminal according to a second paging schedule. In some aspects an access point of the first type (e.g., a macro node) provides service over a macro coverage area and an access point of the second type (e.g., a femto node) provides service over a smaller coverage area and/or provides restricted service.
Abstract:
Systems and methodologies are described that facilitate applying offsets and/or selectable hysteresis values to favor access points in cell reselection. In measuring and ranking surrounding access points in reselection, offsets can be applied to favorable access points to facilitate cell reselection thereto. The offset can positively affect measurements, and thus ranking as well, in some cases. Negative offsets can also be applied to lower measurements (and thus ranking) of some access points. Moreover, hysteresis values can be applied in measuring current cells to prevent frequent reselection. The hysteresis values can be selected based on a type of the current cell or related access point to expand the coverage area where desired. Thus, where the current access point is favorable, a larger hysteresis can be added to measurements related to the current access point.
Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier for sets of one or more nodes such as restricted access points and access terminals that are authorized to receive service from the restricted access points. Access control may be provided by operation of a restricted access point and/or a network node. In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier for sets of one or more nodes such as restricted access points and access terminals that are authorized to receive service from the restricted access points. Access control may be provided by operation of a restricted access point and/or a network node. In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
Systems and methodologies are described that facilitate applying offsets and/or selectable hysteresis values to favor access points in cell reselection. In measuring and ranking surrounding access points in reselection, offsets can be applied to favorable access points to facilitate cell reselection thereto. The offset can positively affect measurements, and thus ranking as well, in some cases. Negative offsets can also be applied to lower measurements (and thus ranking) of some access points. Moreover, hysteresis values can be applied in measuring current cells to prevent frequent reselection. The hysteresis values can be selected based on a type of the current cell or related access point to expand the coverage area where desired. Thus, where the current access point is favorable, a larger hysteresis can be added to measurements related to the current access point.